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Generalized Einstein relation: A stochastic modeling approach

E. Barkai and V. N. Fleurov
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Tel Aviv 69978, Israel
~Received 11 September 1997; revised manuscript received 23 March 1998!

For anomalous random walkers, whose mean square displacement behaves like^x2(t)&;td (dÞ1), the
generalized Einstein relation between anomalous diffusion and the linear response of the walkers to an external
field F is studied, using a stochastic modeling approach. A departure from the Einstein relation is expected for
weak external fields and long times. We investigate such a departure using the Scher-Lax-Montroll model,
defined within the context of the continuous time random walk, and which describes electronic transport in a
disordered system with an effective exponentd,1. We then consider a collision model which for the force
free case may be mapped on a Le´vy walk (d.1). We investigate the response in such a model to an external
driving force and derive the Einstein relation for it both for equilibrium and ordinary renewal processes. We
discuss the time scales at which a departure from the Einstein relation is expected.@S1063-651X~98!07907-0#

PACS number~s!: 05.40.1j, 05.20.Dd, 82.20.Fd, 02.50.Ey
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I. INTRODUCTION

Biased and unbiased anomalous diffusions are well es
lished phenomena@1–8# found in many different systems
For unbiased processes, the mean and mean square dis
ments of a test particle interacting with some kind of therm
bath can behave like

^x2~ t !&0;td and ^x~ t !&050. ~1!

The subscript zero in̂•••&0 denotes the case when no e
ternal driving force is applied to the particle. WhendÞ1 the
diffusion is anomalous, the cased,1 is called slow diffu-
sion or subdiffusion, andd.1 is called enhanced diffusion
Such a behavior may be found in the absence of an exte
macroscopic driving force. When such an external forceF is
applied the symmetry of the system is broken and then

^x~ t !&F;tdF ~2!

is found. In what comes we call a process for whichdF5d
51 normal process, otherwise the process is considere
be anomalous. Normal processes are usually Gaussian w
anomalous processes are as a role non-Gaussian.

If the system is close to thermal equilibrium at a tempe
ture T, the generalized Einstein relation@5,7,9–13# relates
the fluctuations of the test particle position in the absence
an external field to its behavior under the influence of a c
stant~time and space independent! force fieldF, according to
@5#

^xi
2~ t !&052

kBT

F
^xi~ t !&F . ~3!

Here xi is the component ofx along F. Equation ~3! is
strictly valid only in the linear response regime which mig
be found whenF→0.

When the external field is finite though weak and for s
tems exhibiting normal diffusion and transport the Einst
relation between the diffusion and mobility coefficien
@14,15# is useful in describing transport for both short a
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long times~high and low frequencies!. For anomalous trans
port systems this approach is not expected to work so w
@to see this insert Eqs.~1! and ~2! in Eq. ~3! and assume
dFÞd#. As can be seen from Eq.~3! if the exponentdF

depends weakly on the external force then for any finite fo
and long enough time a large deviation from the generali
Einstein relation may be expected.

The Scher-Lax-Montroll~SLM! model @16–18# defined
within the context of the continuous time random wa
~CTRW! will be considered here. We show that for th
model, describing subdiffusion of electrons in disorder
materials, the effective exponentdF is indeed force depen
dent. Once this exponent is calculated, it is then easy to
the time scales at which the deviations from the Einst
relation are expected to be large.

Bouchaud and Georges@5#, starting from a Hamiltonian
description of an unspecified system, give a proof of
generalized relation~3!, based on a linearization procedu
valid for short times. Their derivation is carried out for fixe
disorder. In Sec. II we show that the generalized Einst
relation ~3! can be derived from the well known linear re
sponse theory@15#. This derivation is not limited to a fixed
disorder, however, it does assume that the underlying
chastic process is stationary. This inspired us to investig
both stationary and nonstationary stochastic processes.
have found that for a collision model under considerat
here, the Einstein relation is valid~under certain conditions!
also for nonstationary processes, provided thatF→0.

Violations of the Einstein relation were found for sever
transport models@5,19,20#. Bouchaud and Georges@5# have
already pointed out that for long times and finite forces
Einstein relation is not expected to be a useful approxim
tion. Without limiting themselves to a specific model the
predict a possibility of a crossover from a short time beh
ior with ^x(t)&F;td to another long time regime with
^x(t)&F;t. The subsection in Sec. III uses the SLM model
investigate a different type of departure from the Einst
relation and gives a detailed description of its nature fo
specific model.
1296 © 1998 The American Physical Society
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We were also motivated by recent experiments wh
have checked the validity of the Einstein relation for tw
different types of slow diffusions withdF,1 and d,1.
Qing et al. @21# measured a non-Gaussian diffusion in sem
conductors. The experiment indicated the correctness of
~3! to within the prefactor of the order one which could n
yet be determined exactly. Amblardet al. @22# measured
both ^xW2(t)&0 and ^xW (t)&F for magnetic beads~diameter
mmt) on a polymer network. We have found out@23# that
the experiment of Amblardet al. is in agreement with the
generalized Einstein relation. As far as we know this is
first direct experimental verification of the generalized E
stein relation for an anomalous system.

Section IV considers a stochastic collision model@24,25#
resulting in an enhanced diffusion. In this model a particle
a massM collides at random times with heat bath particl
whose mass ism. An important parameter controlling th
strength of the collisions is the mass ratioe[m/M . We gen-
eralize Drude’s approach to the case of a long tailed pr
ability density function~PDF! of the independent time inter
vals between collision events. The dynamics of the part
between collision events are Newtonian. In the absence o
external force and under certain conditions@25#, the collision
model can be considered as belonging to the same unive
ity class as the Le´vy walks @1,2,26–28# since it produces the
same asymptotic time behaviors of the mean square disp
ment.

Here we consider the influence of an external force a
derive the Einstein relation~3! for this model. This type of a
model allows us to discuss the limiting cases of stro
e51 or weake!1 collisions. We show,inter alia, that un-
like Gaussian transport processes, the mean displace
^x(t)&F in the long time limit does not depend on th
strength of the collisions~i.e., it is independent of the mas
ratio e5m/M ). However, the parametere is important since
it controls the transition from the short time behavi
^x(t)&F;t, to an enhanced,̂x(t)&F;tdF,dF.1, behavior
valid for long times.

II. ANOMALOUS DIFFUSION, LINEAR RESPONSE
THEORY, AND STATIONARITY

The linear response theory@15# is used here to show th
conditions under which the generalized Einstein relation~3!
holds. For simplicity we shall consider here a one dime
sional case. A test particle, described by an unspeci
Hamiltonian, moves under the action of a perturbationHext
52xF(t) whereF(t) is an external time dependent forc
AssumingF(t)5Fu(t) whereu(t) is a step function, linear
response theory yields the average velocity of the test

d

dt
^x~ t !&F5~F/kBT!E

0

t

^v~ t8!v~0!&0dt8, ~4!

where ^v(t8)v(0)&0 is the canonical velocity correlatio
function at thermal equilibrium forF50. The mean square
displacement̂x2(t)&0 is also related to the correlation func
tion according to

^x2~ t !&05E
0

tE
0

t

^v~ t8!v~ t9!&0dt8dt9. ~5!
h
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For a stationary process, the function^v(t8)v(t9)& depends
on the time differenceut82t9u only. Using the stationary
condition and the convolution theorem for Laplace transfo
it is easy to show that in the Laplace domain (t→u)

^ x̂~u!&F5
F

2kBT
^x̂2~u!&0 . ~6!

Returning to the time domain we get the generalized Eins
relation ~3!. Equation~6! is assumed to work well both fo
normal and anomalous diffusions and for different types
disorder.

In deriving Eq.~6! it was assumed@15# that the perturba-
tion has been switched on in the infinite past, when the s
tem is described by a canonical density matrix. It was a
assumed that the process is stationary, meaning that p
abilities describing the process are invariant with respec
time shifts@15#. According to Ref.@15#, the stationary con-
dition is satisfied if the environment is in a stationary sta
with a constant temperature, pressure, etc., and if the par
spends long enough times interacting with its environme

We may ask, how long is long enough? One expects t
if a relaxation time exists, one should wait for times lon
compared with this time scale. However, for some proces
which result in anomalous diffusion no such time scale
ists. Thus we believe that an additional insight into the v
lidity of the Einstein relation is achieved by considering
kinetic approach which assumes a stochastic~non-
Hamiltonian! description of the system.

III. CTRW

In the decoupled version of the CTRW@3,8,29# which
was introduced by Montroll and Weiss over 30 years ago
walker hops from site to site and at each site it is trapped
a random time. For this well known model two independe
PDFs describe the walk. The first is thec(t) PDF of the
pausing times between successive steps. The second o
thej( x̃) PDF for the displacement of the walker at each st
Shlesinger@30# showed that anomalous subdiffusion arises
c(t) is long tailed with its Laplace transform behaving lik

ĉ~u!.12AFudF, with 0,dF,1, ~7!

meaning that even the first moment of this PDF diverges
The first two moments of the hopping length PDF,j( x̃),

are assumed to exist, so that its Fourier transform for smaq
behaves like

j̃~q!511 iq^x̃&F2
1

2
q2^x̃2&F1•••. ~8!

The parametersAF , dF , ^x̃&F , and^x̃2&F determine the long
time behavior of the mean linear^x(t)&F , and mean square
^x2(t)&F , displacements of the walker. They may, in pri
ciple, depend on the strengthF of the external field. When
the medium in which the walk is performed is on avera
isotropic and whenF50, it follows from the symmetry con-
siderations that̂ x̃&050.
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According to the results derived in@8# @see Eq.~2.82b!
therein# the mean square displacement of the walker in
absence of the field is

^x2~ t !&0.^x̃2&0

td0

A0G~11d0!
. ~9!

When the walk is biased, we have†see Eq.~2.81b! in Ref.
@8#‡

^x~ t !&F.^x̃&F

tdF

AFG~11dF!
. ~10!

We define now the dimensionless ratio

R~ t ![
F

2kBT

^x2~ t !&0

^x~ t !&F
, ~11!

which according to the Einstein relation is expected to
time independent and satisfiesR(t)51. However according
to Eqs.~9! and ~10!

R~ t !5
F

2kBT

^x̃2&0AFG~11dF!

^x̃&FA0G~11d0!
td02dF. ~12!

For FÞ0 the quantityR(t) varies with time ifdFÞd0. Equa-
tion ~12! shows that for any finite force, however small~i.e.,
even whenFl /kBT!1 with l being a characteristic micro
scopic scale!, large deviations from the Einstein relation w
be found for long enough times. Such a behavior is ne
found for Gaussian diffusion processes for which the ra
R(t) is time independent and for small fieldsR(t).1. Also
notice that for Gaussian processes the ratioR(t) can be Tay-
lor expanded in powers of the external forceF aroundF
50 the coefficients being independent of time, whereas
is not possible for the anomalous processes withdFÞd.

Let us assume that the Einstein relation is valid whenF
→0 and check what it implies for the relation between t
microscopic parameters which enter the CTRW modeli
This means that we take limF→0R(t)51, which implies
limF→0dF5d0, limF→0AF5A0, and

lim
F→0

F

2kBT

^x̃2&0

^x̃&F

51. ~13!

Comparing between this equation and Eq.~3! we notice that
Eq. ~13! is an Einstein relation for the microscopic param
eters of the CTRW model. In Appendix A we show in
straightforward way that Eq.~13! is valid for a model of
symmetric random barriers thus giving some justification
the correctness of Eq.~13! and hence to the Einstein relatio
The important assumption made in Appendix A is that
microscopic stochastic dynamics satisfies detailed bala
which is the condition needed to ensure validity of the g
eralized Einstein relation.

It is interesting to emphasize that the two limits of lon
time and weak field in Eq.~12!,

lim
F→0

lim
t→`

R~ t !Þ lim
t→`

lim
F→0

R~ t !, ~14!
e
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do not commute. The long time Einstein result is reache
we take firstF→0 and only thent→`.

Calculation of c„t…

This subsection shows, for a specific example, how a
pendence of the exponentdF on an external force may arise
Scher and Lax@16,17# were the first to calculate the functio
c(t) for an unbiased system and to use it within the CTR
for a description of hopping electron transport~i.e., current
flow in semiconductors such as Si and Ge due to tunne
between impurities!. They showed that for large times

c~t!;~ ln t!2/t11~h/3!~ ln t!2
, ~15!

wheret is a dimensionless time,h54pRd
3ND with Rd being

half of an effective Bohr radius andND the density of donors
in the system. Unlike the PDF~7! the first moment of the
PDF ~15!, exists. The logarithmic dependence of the exp
nent (h/3)(ln t)2 on time guarantees thatc(t) behaves like
a power law for long times.

For calculations of transient photocurrent one can
proximate Eq.~15! by c(t);t212d with @18#

d5
1

3
h~ ln t!2, t5O~t t! ~16!

and t t is a transient time. Scher and Lax have assumed
validity of the Einstein relation and with it calculated th
complex ac mobility using Eq.~15!. Thus their calculation of
c(t) is for F50.

An external field can strongly influence tunneling as o
served in different physical effects~e.g., cold emission@31#,
Landau-Zener breakdown@32#, and electron scavengin
@33,34#!. Here we shall calculatec(t) using the same pro
cedure as used by SL for a system subject to a uniform b
We shall show that when an external uniform fieldE is
switched on, the dimensionless densityh is renormalized as

h→
h

~12b2!2 , ~17!

with

b[UeERd

kBT U, ~18!

the functional form ofc(t), Eq. ~15!, remaining unchanged
Figure 1 shows the ratio between the PDFcb(t) for b

Þ0 and the field free result of SLM for the PDFc0(t)
~below the subscriptb is suppressed!. We see that for long
times this ratio tends to zero. In the SLM theory the pow
law behavior ofc(t) for large times gives the low frequenc
behavior of the anomalous ac conductivity. From Eq.~17!
and Fig. 1 we conclude that there exist long times for wh
the sensitivity ofc(t) on b becomes important and must b
taken into account when analyzing experimental results
tained from finite field experiments.

When an external field reduces the potential barrier
charge carrier has to cross, the tunneling rate increases
this in turn may have a strong influence on the transp
This increase of the tunneling rate is consistent with o
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result ~17!, which implies that for fixedh and T, c(t) de-
cays faster to zero as the fieldE increases. This behavior i
in agreement with the numerical simulations@35#. Scher
@36#, in the context of recombination processes, pointed
that the exponents are functions of the external fields. H
the dependence of the PDFc(t) on the field is found and the
approximation~17! is discussed.

According to the SLM procedure the probabilityQ(t) is
introduced, of finding an electron in a given trap at timet if
it has been there at timet50. This probability decrease
with time due to tunneling hopping to surrounding trap
Then according to Eq.~10! in Ref. @17#,

c~ t !52
d^Q~ t !&

dt
, ~19!

with

^Q~ t !&5expS 2NDE d3r $12exp@2W~r !t#% D , ~20!

whereW(r ) is the transition rate between donors separa
by r .

The function W(r ) has been calculated by Miller an
Abrahams@37#. Using SLM notation

W~r !.W08S r

Rd
D 3/2

D~r !exp~2r /Rd!expF2
D~r !

kBT G ,
~21!

whereD(r ) is the energy difference between the traps. Eq
tion ~21! was derived using the variational principle. It a
plies when the process of phonon absorption (D.0) domi-
nates. Equation~21! is an approximation valid when
D/kBT@1.

There are two contributions

FIG. 1. The ratiocb(t)/c0(t) vs t for different values ofb and
h51022. For D donors in Si SL useRd512 Å thus h51022

corresponds toND54.610217 cm23. For T53 K, b50.15 implies
the field E5323 V/cm. The intersection of the three curve
cb(t)/c0(t)51, is explained in the text.
t
re

.

d

-

D~r !5D0~r !1eE•r , ~22!

where the first termD0(r ) is the energy difference due to th
random potential and the second term is caused by the e
nal field E. We consider length scales at which

uD0u@ueE•r u, ~23!

with uD0u being the variance of the fluctuating functionD(r ).
The calculation is carried out assuming that the constantuD0u
can replace ther dependent functionD0(r ). The agreement
between theory and experiment found by SLM is the m
justification for this approach. Equation~21! is replaced by
the simple form

W~r !5WMexpS 2
r

Rd
2

eE•r

kBT D , ~24!

with

WM5W08S r̄

Rd
D 3/2

expS 2
uD0u
kBT D . ~25!

r̄ is an appropriate mean value. Equation~24! is valid for
weak fields satisfyingb,1. WM is an attempt frequency
whose dependence on the external field is neglected.

A simple way to find the behavior ofc(t) is to notice that
the integrand in the exponent in Eq.~20! behaves like a step
function,

12exp@2W~r !t#5H 1, W~r !t,1

0, W~r !t.1
~26!

and then using Eq.~24! to show that

2 ln^Q~ t !&5
1

3
~ ln t!3

h

~12b2!2 , ~27!

with t5WMt. An accurate approach given in Appendix B
shows that Eq.~27! is asymptotically exact to within a nu
merical factor.

The exact analysis shows that

c~t!

WM
;

heg

~12b2!2 ~ ln egt!2~egt!212~1/3![h/~12b2!2] ~ ln egt!2
,

~28!

with eg.1.78. This form replaces Eq.~15! derived for E
50. We see that the effective exponent is field depend
and therefore the response to the field is nonlinear and a
have discussed in the preceding section the Einstein rela
for long times and finite fields cannot be used to analyze
transport properties of the system. In Fig. 2 we show
PDF c(t) equation~28! vs t for fixed h. We observe a
crossover from a power law behavior ofc(t) valid for b
50 to an exponential decay found whenb→1.

Using Eq.~28! we define now the ratio

cb~t!

c0~t!
5

1

~12b2!2 expH 2
h

3

b2~22b2!

~12b2!2 @ ln~egt!#3J
~29!
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for egt.1. For a fixed short time this ratio is an increasi
function of b while for a fixed long time this function is a
decreasing function ofb. The transition timetc between
these two behaviors is found, atb2!1, to be

tc5e2gexpF S 3

h D 1/3G , ~30!

which is independent ofb. It is easy to see that forb!1, tc
also satisfies the conditioncb(tc)/c0(tc)51. All these fea-
tures can be observed in Fig. 1 where we see~a! for t,tc
(t.tc) the ratio~29! increases~decreases! with b, ~b! for all
three choices ofb the conditioncb(tc)/c0(tc)51 is ful-
filled at the same pointtc .

At very large times the contribution toc(t) is from tun-
neling to very large distances. However, according to
~23! for these large distances our analysis is not valid. Tra
lating distances into times using Eq.~24!, we find that our
results are expected to be valid if

t,expS D0

euEuRd
D . ~31!

For longer times the external field cannot be considered
small perturbation.

We now discuss further the meaning of the approxim
tions made above. Equation~24! considers the influence o
the external field on the energy difference between sites~the
D/kBT term! and neglected the temperature independent
fluence of the field on tunneling. Instead of Eq.~24! one may
consider the tunneling rate

W~r !5WMexpF2S r

Rd
D2S eE•r r

RdU0
D2S eE•r

kBT D G , ~32!

FIG. 2. Dimensionless PDFc(t)/Wm vs t for h52.171025 and
different b values (b050, b150.83, b250.95, b350.98, b4

50.99). The solid curve presents the exponential PDFc(t)/Wm

5exp(2t). Notice that the longed tailed behavior ofc(t) found for
b50 switches into an exponential decay asb→1.
.
s-

a

-

-

whereU0 is the characteristic energy barrier the charge c
rier has to tunnel under~see details in@38#!. The additional
term eE•r r /RdU0 appearing in Eq.~32! can be easily de-
rived by calculating the action integral under a square pot
tial barrier which is slightly tilted due to the external field
Equation ~32! is valid for not too long distancesr
,U0 /euEu, the second term in the exponent being a pert
bation to the first one. A calculation similar to that which h
led to Eq. ~27! shows that forẽ[eRduEu/U0 satisfying ẽ
!b

2 ln^Q~ t !&5
1

3

h

~12b2!2 ~ ln t!31h
bẽ

~12b2!2
ln4t•••.

~33!

For weak fields the second term is a quadratic function
uEu. This second term is smaller than the first one when

bẽ ln t!1. ~34!

Thus for not too long times our neglect of the field depend
corrections to the action integral is justified and Eq.~28! is a
sound approximation.

IV. COLLISION MODEL

In the preceding section, the CTRW was used to inve
gate a system which exhibits subdiffusion. We shall n
address a collision model which naturally leads to an
hanced diffusion withd.1 in Eq. ~1! @24,25#.

A classical test particle with a massM moves in a one-
dimensional space and interacts with bath particles of a m
m. At random, the test particle is elastically kicked by a ba
particle. According to the energy and momentum conser
tion laws, the change of the test particle momentum due
the i th kick is described by the equation

pi
15m1pi

21m2p̃i , ~35!

where

m15
12«

11«
, m25

2

11«
,

and e5m/M . Here pi
2 and pi

1 indicate the values of the
momentum of the test particle just before and after the c
lision labeled i ( i 51,2, . . . ). p̃i is the momentum of the
kicking bath particle. The coordinate of the test particle
not changed by the kick. Here we also assume that the d
tion of a collision event is much shorter than any other tim
appearing in the problem. An external uniform forceF is
supposed to act on the test particle. This force accelerate
test particle during the time intervals between collisi
events, according to Newton’s laws of motion.

Our model assumes that the time intervalst i , which
elapse between the (i 21)th andi th collision events, are in-
dependent identically distributed random variables descri
by a yet unspecified PDF,q(t). This PDF is assumed to b
independent of the mechanical state of the test particle,
does not change in the course of the system’s evolution.
momenta of the kicking bath particlesp̃i are also indepen-
dent identically distributed random variables; their statisti
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properties are determined by the Maxwell PDFf m( p̃i) with a
vanishing mean and a variance^ p̃i

2&5mkBT.
In the absence of an external force, with the exponen

PDF, q(t), and in the strong collision limit (e51) this
model becomes the well known Drude model. The case
long tailed PDFs,q(t) and F50, was investigated in ou
papers@24,25#. This leads to an enhanced diffusion withd.1
in Eq. ~1!. Here the version of this model considered is wh
the test particle is driven by an external space and time
dependent forceF.

Figures 3–5 show trajectories of the test particle, wh
for long times

q~t!;
2

p
t22. ~36!

For this PDF all integer moments diverge and we are dea
with a situation very different from the classical Drud
model. Appendix C describes an algorithm producing ti
intervals whose PDF decays algebraically with time, Eq.~36!
being an example. Long time intervals in which no collisi
event takes place are shown in Figs. 3–5, a character
feature of the stochastic process. In Fig. 3 we see a drif
the test particle caused by the external forceF in the strong
collision limit e51. One can observe that during the col
sionless time intervals~e.g., 400,t,520) the particle coor-
dinatex increases quadratically with time as expected for
accelerating test particle. In time intervals in which ma
collisions have occurred the drift seems to increase line
with time. As we shall show here the averaged drift genera
follows ^x(t)&F;tdF with 1<dF<2, meaning that the mea
displacement behavior is intermediate between the quad
and linear laws.

FIG. 3. Drift of a test particle which encountered 200 collision
Dimensionless units withe51, F51, mkBT51, and an accelera
tion F/M51 are used. The dots denote the collision events. No
the long time interval 400,t,520 in which no collision takes
place; this time interval is roughly 20% of the observation time
al
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Figure 4 shows the momentum of the test particle vs ti
for e51. One can see that the particle gains a momentum
beyond its thermal momentumpth5AMkBT which corre-
sponds topth51 in the dimensionless units we use he
Notice that this deviation occurs only during the long col
sionless time intervals, hence the departure from a clos

.

e

FIG. 4. Momentum of the test particle vs time for the sam
realization as in Fig. 1. Notice that in the time interval 400,t
,520 the momentum strongly exceeds its thermal momen
which is set to be unity.

FIG. 5. Momentum of the test particle vs time in the we
collision limit e50.1. All other parameters are identical to tho
used in Fig. 4. Notice that roughly ten collisions are needed to re
the test particle momentum from its maximal value, gained dur
the long collisionless time interval (400,t,520). This should be
compared to the single collision needed for the casee51, Fig. 4.
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1302 PRE 58E. BARKAI AND V. N. FLEUROV
equilibrium state would not have occurred had the collisio
been distributed in a uniform way@e.g., hadq(t) been an
exponential function#. Figure 5 exhibits the same realizatio
as in Fig. 4 but for the weak collision limit,e50.1. We see
that the relaxation of momentum occurs only after seve
collision events instead of a single collision for the stro
collision case, Fig. 4.

A. Definitions

The following definitions and mathematical tools will b
used below. The sample space consists of~1! a non-negative
integers which is the number of collision events which o
cur during the timet. ~2! For eachs there exists a set ofs
11 real time intervalst i (1< i<s11; 0,t i,`)

$t1 ,t2 , . . . ,t i , . . . ,ts11%.

The time intervalt1 is the time elapsing between the start
observation (t50) and the first collision event. It is calle
the first waiting time.t i ( iÞ1,iÞs11) are time intervals
between collision events called waiting times.ts11 is the
time between thesth collision ~i.e., the last collision in the
sequence! and the time of observationt. ~3! For eachs there
exist a set ofs real momentap̃i (2`, p̃i,`),

$ p̃1 ,p̃2 , . . . ,p̃i , . . . ,p̃s%

of the kicking bath particles.
The time intervals appearing in the problem are assum

to have the following properties.
~1! The waiting times~including the first one! and ts11

are defined in the domain

(
i 50

s

t i 115t. ~37!

~2! The first waiting timet1 is an independent random
variable whose statistical properties are described by
PDF h(t1).

~3! The waiting timest i (1, i ,s11) are assumed to b
independent identically distributed random variables wh
statistical properties are determined by the PDFq(t i).

~4! The probability that no collision event took place
the timets11 is, for s>1,

W~ts11!512E
0

ts11
q~ t !dt. ~38!

~5! The probability that no collision event occurs in th
interval (0,t1) is

Z~t1!512E
0

t1
h~ t !dt. ~39!

To calculate the average value of a physical quan
A(t,x,p) one has to consider the sequence
s

l

d

e

e

y

$A0~t1!,A1~t1 ,p̃1 ,t2!, . . . ,As~t1 ,p̃1 , . . . ,ts11!, . . . %
~40!

of functions over the state space. Here

As~t1 ,p̃1 , . . . ,ts11!

is the quantityA calculated using the assumption that t
particle has encountered a sequence ofs collisions
$ p̃1 , . . . ,p̃s% with the bath particles and the time interva
are$t1 , . . . ,ts11%. Then the average value is determined
the equation

^A~x,p!&5^A0&1(
s51

`

^As~x,p!& ~41!

in which each term is the average value ofA(x,p,t) calcu-
lated under the condition thats collision events have oc
curred. Then

^A0&5A0~ t !Z~ t ! ~42!

and fors>1

^As~x,p!&5E
2`

` dg

2pE0

`

h~t1!dt1F)
i 52

s E
0

`

q~t i !dt i G
3E

0

`

W~ts11!dts11F)
i 51

s E
2`

`

f m~ p̃i !dp̃i G
3expH igS (

i 51

s11

t i2t D J
3As$ . . . ,p̃i ,t i . . . ,ts11%. ~43!

Here f m( p̃i) is the Maxwell-Gaussian PDF. The averagin
procedure~41!–~43! implies summation over the numbers
of the collision events during the observation timet, as well
as integrations over all PDFs of the time intervals betwe
the kicks and over the momenta of the kicking particles. T
representation

dS (
i 51

s11

t i2t D 5
1

2pE2`

`

expH igS (
i 51

s11

t i2t D J dg ~44!

of thed function in Eq.~43! ensures that the sum of all tim
intervals equals the observation time, Eq.~37!.

The choice of the timing of the start of observation det
mines the functionh(t1). This issue is discussed in the co
text of renewal theory by@39# and in the context of the
CTRW in @6,40,41#. The SLM model predicts different a
conductivities depending on the choice ofh(t) @40,41#. If a
system is considered to be described by a constant rate 1t̄ of
transitions~jumps, collisions, etc.!, then for such a process
called an equilibrium renewal process, we have
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heq~t1!5

12E
0

t1
q~ t !dt

t̄
. ~45!

An equilibrium renewal process can be defined only if
least the first moment ofq(t) is finite. However, PDFsq(t)
with diverging first moment are also to be considered, a
for these an equilibrium renewal process cannot be defin
That is why we shall consider also the ordinary renewal p
cess

hor~t1!5q~t1! ~46!

for which the observation has started just after a collis
event.

To choose the correct renewal process to model a phys
process one needs detailed information on the way the
tem has been prepared. Thus, for example, for photo ca
experiments@18# ~for which d,1) the ordinary renewal pro
cess is chosen since the electrons or holes are excitedt
50 when the process begins. If the process has been g
on for a long time prior to the start of the observation of t
process and ift̄ exists then it is an equilibrium process. F
Gaussian transport systems and for the dc case these d
ences are of no practical importance, however, for
anomalous diffusion our collision model~for which d.1)
indicates a strong sensitivity of the results to the way
system has been prepared initially. This may set limits on
abilities to predict the behavior of anomalous systems si
the information on how the system has been prepared is
always sufficient to determineh(t).

B. Average momentum

We shall now calculate the mean momentum of the
particle moving under the action of an external force. T
mean momentum allows one to find the mean displacem
which is our main goal in this section. According to th
averaging procedure~41!–~43! we have to express first th
momentum as a function of the time intervals between c
lision eventst i and momenta of the kicking bath particlep̃i .
This is done by using the stochastic map

pi 11
1 5m1~pi

11Mat i 11!1m2p̃i 11 , ~47!

which is obtained from Eq.~35! for the constant acceleratio
a[F/M . This map relates between the momentum of
test particle just after the (i 11)th collision event and the
momentum of the test particle just after thei th collision
event. At a timet50, the initial momentum of the test pa
ticle is p0

15p0.
The momentum of the test particle which encounteres

collisions is

ps5ps
11Mats11 , ~48!

where we have taken into account the driven motion of
test particle in the final time interval,ts11. Then using Eq.
~47!, Eq. ~48! is rewritten as
t

d
d.
-

n

al
s-

ier

t
ing

er-
e

e
r
e
ot

st
e
nt,

l-

e

e

ps5ps
i 1ps

f , ~49!

where the second term

ps
f5(

i 51

s

m1
s2 i~m1Mat i1m2p̃i !1Mats11 ~50!

does not depend on the initial momentum. This informat
is kept by the first termps

i 5m1
sp0.

Now the Laplace transform of the average momentum

^p~ t !&5^pf~ t !&1^pi~ t !& ~51!

is calculated. Here according to Eq.~41!

^pf~ t !&5(
s50

`

^ps
f& and ^pi~ t !&5(

s50

`

^ps
i & ~52!

and the meaning of the average^ & was explained in the
preceding subsection. It is easy to see using the avera
procedure that all terms in Eq.~50! which depend onp̃i will
not contribute to the average since the bath particle mom
tum has zero mean.

Since we are interested in the averaged momentum,ps
f ,

Eq. ~50!, is inserted in Eq.~43! with the identification
As$ . . . ,p̃i , . . . %5ps

f$ . . . ,p̃i , . . . %. Using the transforma-
tion ig52u, carrying out the integrations overt i and p̃i as
well as summing overi as appears in Eq.~50! one arrives
after a straightforward calculation at the following resul
For the realization in which the test particle experiences
collisions,s50, one has

^ps50
f ~ t !&5FE

2 i`

i` du

2p i H 2
dẐ~u!

du J exp~ut!. ~53!

For s>1

^ps
f~ t !&5E

2 i`

i` du

2p i
^ p̂s

f~u!&exp~ut!, ~54!

with

^ p̂s
f~u!&5FH m1

sF2
dĥ~u!

du
G q̂s21~u!Ŵ~u!

1m1S 12m1
s21

12m1
D ĥ~u!F2

dq̂~u!

du G q̂s22~u!Ŵ~u!

1ĥ~u!q̂s21~u!F2
dŴ~u!

du
G J . ~55!

Here the functions with hats denote the Laplace (t→u)
transforms and the integration overu appearing in Eqs.~54!
and ~53! is identified as the inverse Laplace transformati
~see@24# which elaborates on this point!.
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According to the formula~41! we sum over the number o
collisionss and get the averaged momentum of the test p
ticle in u space,

^ p̂f~u!&5(
s50

`

^ p̂s
f~u!&

5FH F2
dẐ~u!

du
G1F2

dĥ~u!

du
GŴ~u!S m1

12m1q̂~u!
D

1m1ĥ~u!F2
dq̂~u!

du GŴ~u!

3
1

@12q̂~u!#@12m1q̂~u!#
1ĥ~u!

1

12q̂~u!

3F2
dŴ~u!

du
G J . ~56!

The dependence of the mean momentum on its in
value p0 is calculated using the above procedure
ps

i 5m1
sp0. Equation~43! results in

^ p̂s50
i ~u!&5p0Ẑ~u! ~57!

for s50 and

^ p̂s>1
i ~u!&5p0m1

sĥ~u!q̂s21~u!Ŵ~u! ~58!

for s>1. Summing over the number of collisionss @accord-
ing to Eq.~41!# yields

^ p̂i~u!&5p0F Ẑ~u!1m1

ĥ~u!Ŵ~u!

12m1q̂~u!
G . ~59!

Equations~56! and~59! give the mean of the test particl
in u space,

^ p̂~u!&5^ p̂f~u!&1^ p̂i~u!&. ~60!

This equation is quite general and can be used for var
choices of the first waiting time PDFh(t1).

C. Mean linear displacement

The mean linear displacement^x(t)&F is found using a
relation between the Laplace transforms of the mean
placement and the averaged momentum

^x̂~u!&F5^x̂i~u!&F1^x̂f~u!&F5
^ p̂~u!&

uM
~61!

in which Eq.~60! allows for a separation of the parts depe
dent and independent of the initial momentump0.

Considering the equilibrium renewal process, the Lapl
transforms of Eqs.~38!, ~39!, and ~45! are found using the
convolution theorem

Ŵ~u!5
12q̂~u!

u
, ~62!
r-

l
r

s

s-

-

e

ĥeq~u!5
12q̂~u!

ut̄
, ~63!

and

Ẑeq~u!5
1

uH 12F12q̂~u!

ut̄
G J . ~64!

Inserting these three equations in Eq.~56! we have

^x̂f~u!&F5
F

Mu3H 12
~12m1!

ut̄

@12q̂~u!#

@12m1q̂~u!#
J , ~65!

then using Eqs.~59! and ~62!–~64! we find

^x̂i~u!&F5
p0

Mu2H 12
~12m1!

ut̄

@12q̂~u!#

@12m1q̂~u!#
J . ~66!

For the ordinary renewal process according to Eq.~46! we
use

ĥor~u!5q̂~u! ~67!

and

Ẑor~u!5Ŵ~u!. ~68!

Then using Eqs.~56! and ~62! we find

^x̂f~u!&F5
F

Mu3H 11u
dq̂~u!

du

12m1

@12q̂~u!#@12m1q̂~u!#
J
~69!

and

^x̂i~u!&F5
p0

u2M
F 12q̂~u!

12m1q̂~u!
G . ~70!

A straightforward limiting case of these equations is wh
the bath particles are massless, namely,e50. Then there is
no interaction with the bath and the two results for the eq
librium renewal process equations~65!, ~66! and for the or-
dinary renewal process~69!, ~70! are identical. Whene50,
m151 and then for both processes we find the obvious re

^x̂~u!&F5^x̂i~u!&F1^xf~u!&F5
p0

u2M
1

F

Mu3
, ~71!

which describes an accelerating particle with an initial m
mentum p0. Generally foreÞ0 the two processes do no
produce the same results even in the long time limit.

D. Waiting time probability density function

Below the mean linear displacement is investigated
several special choices of the waiting time PDF,q(t),
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q̂~u!.5
12~Au!a1c1~Au!2a, 0,a,1

11~Au!ln~Au!, a51

12 t̄u1ca~ t̄u!a1c2~ t̄u!2, 1,a,2

12 t̄u2c1~ t̄u!2ln~ t̄u!1c2~ t̄u!2, a52

12 t̄u1c1~ t̄u!21ca~ t̄u!a, 2,a,3
~72!

where ca , c1, and c2 are dimensionless constants. The
PDFs have the property that fora<1 all their moments di-
verge, for 1,a<2 the first moment

t̄52
dq̂~u!

du U
u50

~73!

exists but all higher moments diverge, for 2,a,3 the first
and the second moment

t 2̄5
dq̂2~u!

du2 U
u50

52c1t̄2 ~74!

exist but higher moments diverge. The use@1,2,5# of such
PDFs in the framework of Le´vy walks in a wide variety of
systems is now well established and this gives us a mot
n

ar
ll

om

en

fo

tic
e

a-

tion to investigate the driven motion using these types
functions with the collision model. Choosing PDFs with a
converging moments leads according to the central li
theorem and law of large numbers to a Gaussian behav
these PDFs are not discussed in this paper.

E. Asymptotics of Šx„t…‹F

The long time~smallu) behavior of^x(t)&F for the equi-
librium and ordinary renewal processes is now considere

1. Equilibrium renewal process

An equilibrium renewal process can be defined only if t
average timet̄ between the collision events is finite. Ther
fore only PDFs witha.1 are considered in this subsectio
It will be shown later that the asymptotics of the mean line
displacement is determined only by the part which is ind
pendent of the initial momentum, so that

^x~ t !&F.^xf~ t !&F ~75!

in the long time limit. The correction due to^xi(t)&F depend-
ing on the initial momentum will be discussed in the ne
subsection.

Inserting the Laplace transformed PDFq̂(u) ~72! in Eq.
~65!, using the Tauberian theorem tou→t transform the
mean displacement, we find
^x~ t !&F.5
F

M H cat̄2

G~42a!S t

t̄
D 32a

1S c21
12e

2e D t̄tJ , 1,a,2

F

M H ~c1t̄t !lnS t

t̄
D 1S c21

12e

2e D t̄tJ , a52

F

M S c11
12e

2e D t̄, 2,a,3.

~76!
by
als

ts
are
to

he
nds
We notice that for 1,a<2 the^x(t)&F increases faster tha
linearly with time ~transport is enhanced! while when the
first two moments of the times between collisions exist~i.e.,
a.2) ^x(t)&F increases linearly in time. A faster than line
transport is caused by the long time intervals when no co
sion event takes place. These time intervals can bec
longer for smaller values of the parametera. We also see
from Eq. ~76! that the test particle accelerates and gains
ergy in spite of the collisions with the bath particles.

For 1,a<2 the leading term in Eq.~76! is independent
of e characterizing the collision strength, for example,
very long times

^x~ t !&F.
F

M

cat̄2

G~42a!S t

t̄
D 32a

, 1,a,2. ~77!

The fact that for long timeŝx(t)&F is independent of the
mass ratioe is a unique feature indicating that the asympto
i-
e

-

r

transport properties of the test particle are not controlled
the strength of the collisions but rather by long time interv
in which no collisions occur.

For classical collision models for which all the momen
of the times between collision events exist and which
controlled by the mass ratio of the light bath particle
heavy Brownian particle~e.g., the Rayleigh piston@14#! the
diffusion and the mobility coefficients always depend on t
mass ratio. For our model this classical behavior correspo
to 2,a, when the mobility, according to Eq.~76!, is

m5
1

F

d^x~ t !&F

dt
5

1

M S c11
12e

2e D t̄ ~78!

and so unlike the enhanced case the transport coefficientm is
indeed controlled by the mass ratioe, as well as by the
~existing! first two moments ofq(t).
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Notice also thatm>0 sincec1>1/2 and 0,e,`. To see

why c1>1/2 we use Eqs.~73! and ~74! to write t 2̄2 t̄ 2

5(2c121)t̄2>0 and hence by definitionc1>1/2. The mo-
bility decreases withe reaching its minimum~for constant
c1) when e→`. Then the test particle is surrounded b
heavy bath particles and each collision just changes the

ticle velocity direction. Whenc151/2 and sot 2̄5 t̄ 2 mean-
ing that there are no fluctuations of the time between co
sions ~i.e., the collisions follow one after the other with
constant time interval elapsing between collision events! and
in addition whene→` the particle bounces back and fo
ward between two infinitely heavy walls andm50 as ex-
pected.

Equation ~76! for 1,a<2 contains also linear in time
corrections to the enhanced drift. The first, enhanced, t
becomes larger than the second term only for a large eno
time,

S t

t̄
D @F12e12ec2

2e

G~42a!

ca
G1/~22a!

, 1,a,2

~79!

lnS t

t̄
D @

12e12ec2

2ec1
, a52.

Thus although the enhanced behavior^x(t)&F;t32a is inde-
pendent ofe as shown in Eq.~77!, the parametere controls
the time of transition from the linear@^x(t)&F;t# to the
enhanced@^x(t)&F;t32a# transport.

The limit e!1 can be considered as an example. In t
case, corresponding to the Rayleigh limit of the model,
heavy test particle is kicked by light bath particles. The co
dition ~79! reads now

S t

t̄
D @FG~42a!

2eca
G1/~22a!

, 1,a,2

~80!

lnS t

t̄
D @

1

2ec1
, a52

and the transition time becomes long. It can become e
cially long whena approaches the critical value 2, so th
one should wait an extremely long time until the onset of
enhanced transport.

2. Ordinary renewal process

For the ordinary renewal process we use a proced
similar to that used for the equilibrium renewal process. T
smallu behavior of^x̂f(u)&F , Eq. ~69!, is found usingq̂(u)
defined in Eq.~72!. Then the transformationu→t is invoked
to find the mean displacement
r-

i-

m
gh

s
e
-

e-
t
e

re
e

^x~ t !&F.5
F

2M
~12a!t2, 0,a,1

F

2M

t2

ln~ t/A!
, a51

F

M

cat̄2~a21!

G~42a! S t

t̄
D 32a

, 1,a,2.

~81!

Again we see that the asymptotic result is independent oe.
For a>2 the result coincides with that for the equilibrium
renewal process~76!. The behavior of^x(t)&F;t2 for 0
,a,1 can be understood by noticing that for this proce
there exist long time intervals~of the order of the observa
tion time t) during which no collisions take place. Durin
this interval according to Newton’s law of motionx;t2 and
the quadratic behavior of̂x(t)&F is found. Comparing Eq.
~81! with Eq. ~76! for 1,a,2 we see that the mean linea
displacement̂x(t)&F behaves differently for the equilibrium
and ordinary renewal processes~the prefactors are noniden
tical!. This implies that the long time behavior of^x(t)&F is
sensitive to the statistical properties of the first time inter
in the sequence.

3. Dependence ofŠx„t…‹F on p0

Now the dependence of the mean linear displacemen
the initial velocityp0 /M of the test particle is discussed. Fo
the equilibrium renewal process Eqs.~66! and~72! yield the
long time behavior

^xi~ t !&F.5
p0

M

cat̄

G~32a!S t

t̄
D 22a

, 1,a,2

p0

M
c1t̄ lnS t

t̄
D , a52

p0

M S c11
12e

2e D t̄, 2,a,3.

~82!

For 2,a,3, the initial velocityp0 /M leads only to a small
~time independent! displacement of the test particle where
for 1,a<2 the initial condition results in an averaged di
placement which increases with time.

The strong influence of the initial conditionp0 on ^x(t)&F
for a<2 is due to samples where no collision event h
taken place during the time of evolutiont. To see this we
rewrite Eq.~66! as

^x̂i~u!&F5
p0Ẑeq~u!

uM
1

p0m1

Mu3t̄

@12q̂~u!#2

@12m1q̂~u!#
, ~83!

where Ẑeq(u) is defined in Eq.~64!. The first term in the
right hand side describes processes for which no collis
event takes place, namely,s50, in our averaging procedur
@this term originates from Eq.~57!#. For the long tailed PDFs
we are considering here the probability that no collisi
events occur in the time interval (0,t) @i.e., Z(t), Eq. ~39!#
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decays as a power law to zero. Insertingq̂(u) for a<2 in
Eq. ~83! the smallu behavior of the mean displacement
easily shown to be

^x̂i~u!&F.
p0Ẑeq~u!

uM
.

Since the probability that no collision event takes place
the interval (0,t) is independent of the mass ratioe so is
^xi(t)&F . Needless to say, for classical Gaussian diffus
processes the realization for which no collision event ta
place is negligible for long times.

For the ordinary renewal process Eqs.~70! and~72! yield

^xi~ t !&F.5
p0

M

11e

2e
AS t

AD 12a

, 0,a,1

p0

M

11e

2e
A lnS t

AD , a51

p0

M
t̄
11e

2e
, 1,a,3

~84!

and if we compare this equation with Eq.~82!, we see again
that the two processes give different results due to the
ferent statistical properties of the first time interval in t
sequence.

Both for the equilibrium and ordinary renewal process
the terms depending on the initial momentump0 of the test
particle equations~82! and~84!, however large, are for long
enough times smaller than the leading term of^xf(t)&F in
Eqs.~76! and~81!. Nevertheless, Eqs.~82! and~84! indicate
that the initial conditionp0 decays slowly for anomalou
transport. Its influence on̂xi(t)& increases with time as
power law instead of the more normal situation where
initial condition p0 is responsible for long times only for
time independent shift of̂xi(t)&.

F. Generalized Einstein relation

We compare between the results derived here for
equilibrium ~76! and ordinary~81! renewal processes an
our results for the mean square displacement for the c
F50, published previously@25#. The Einstein relation is
valid for this model both for the equilibrium and ordina
processes. This means that when we insert our results fo
in @25# in Eq. ~11! and assume that the parametersa,t, . . .
are identical for both the force free process and the fo
driven process we find indeedR(t)51. Our results show tha
the Einstein relation holds forF→0 even for nonstationary
processes when there is no microscopic time scale.

We emphasize that if we compare between the two dif
ent processes, the ordinary and the equilibrium, the Eins
relation does not hold even whenF→0. Thus departures
from the Einstein relation~in the limit F→0) will be found
for long times when initial conditions are usually assumed
be of no importance. Thus if we take~wrongly! ^x2(t)&0

eq of
an equilibrium renewal process and^x(t)&F

or of an ordinary
process the ratioR(t) defined in Eq.~11! is
n

n
s

f-

,

e

e

se

nd

e

r-
in

o

lim
F→0

R~ t !5 lim
F→0

~F/2kBT!^x2&0
eq

^x~ t !&F
or

5~12a!21

for 1,a,2 instead of limF→0R(t)51.
A strong sensitivity to the initial preparation of the syste

sets limitations on the way we can use the Einstein relat
If we know ^x2(t)&0 derived either theoretically or measure
experimentally this information can be used to pred
^x(t)&F in the limit F→0 only if we know that the two
processes are of the same type. However, all these di
ences between the processes are of no importance for
times for systems exhibiting classical Brownian motion.

For Gaussian transport systems a criterion for the we
ness of the external field, when the linear response appr
mation holds, is that the average drift velocity^ ẋ&F of the
test particle is much smaller than the thermal velocity. F
stronger fields nonlinear effects become important and
Einstein relation is not valid even approximately. Usua
when ^ẋ&F.AkBTM new types of dissipation mechanism
must be taken into account~e.g., inelastic collisions!. For our
model the velocity of the test particle is time dependent a
therefore for any given force the condition

^ ẋ~ t !&F!AkBTM ~85!

will be satisfied only during a finite interval of time. A
follows from Eqs.~76! and ~81! the condition~85! means

F!5
MAkBTM

~12a!t
, 0,a,1

MAkBTMG~42a!

~32a!cat̄
S t̄

t D
22a

, 1,a,2.

~86!

For any finite forceF, however small, this criterion is vio
lated for long enough times and then the generalized Eins
relation is not expected to be valid.

G. Calculation of q„t…

An example of how an external field can influenceq(t) is
discussed. It is done for models which are slightly differe
from ours but maintain its most important feature, name
the longed tailed PDFq(t). Two such models are~a! the
ordered Lorentz gas@42–44# in which a particle is reflected
by equally spaced static spherical obstacles, centered
hypercubic lattice and~b! anomalous Knudsen diffusion@45#
where the reflections are from a random fractal which mi
ics a disordered porous medium. In both cases one can
lyze the anomalous diffusion in the following approach. Fi
calculate the PDF of the path lengthsr ~i.e., the length of the
trajectories along which the test particle moves freely!; for
an anomalous system one findsp(r );r 2(11a) @e.g., for the
two-dimensional Lorentz gasa52 and hence^x2(t)&0
;t ln t#. Since between the collision events the partic
moves with a constant velocity (F50) one finds after a
simple transformation the PDF of times between the co
sion events,q(t);t2(11a). Once the PDFq(t) is known
the diffusion characteristics can be analyzed using the L´vy
walk approach~see, e.g.,@27#!.
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To take into account the influence of the force on the P
q(t) we shall consider the transformation rule

r ~ t,u!5AFv cos~u!1
at2

2 G2

1v2sin2~u!, ~87!

wherev5uvW u is the speed of the test particle after a collisi
event and the angle of reflectionu is a random variable. This
transformation rule simply relates the displacementr of a
test particle accelerating in two dimensions with the time
free flight t. We shall assume for simplicity thatv is a non-
random variable which means that each collision thermal
the test particle velocity~the case whenv is distributed ac-
cording to a Maxwell PDF can be easily calculated as we!.
The PDFq(t) is given by

q~t!5
1

2pE0

2p

p„r ~t,u!…ṙ ~t,u!du, ~88!

where we have assumed thatu is distributed uniformly. For
short times we haver 5vt, exactly like the casea50 and
then if p(r );1/(Ar11a) we have

q~t!;
1

Ava
t2~11a! ~89!

for long times we have from Eq.~87!

q~ t !;
4~11a!

Aaa
t2~112a!. ~90!

We see that when a field is switched on the exponent
scribing the algebraic decay switches from 11a for F50 to
112a for FÞ0. The transition time from short to long tim
limit is determined by the short range behavior of PDFp(r )
as well as by the strength of the field, and is not discus
here.

We see that very much likec(t) which describes the
subdiffusive behavior in the Scher-Lax-Montroll model t
longed tailed PDFq(t) may also depend on the extern
force. For both cases when a force is applied the proce
become faster and henceq(t) andc(t) decay faster to zero
Like the CTRW the dependence of the exponent describ
the long time behavior ofq(t) on the field implies that for
finite fields and long times a violation of the Einstein relati
is naturally expected.

V. SUMMARY AND DISCUSSION

Nonequilibrium phenomena close to thermal equilibriu
are often described by means of the linear response th
@15# relating the response functions to equilibrium canoni
correlators. van Kampen@46# put forward a sharp objection
to this theory, claiming that it has only a very short range
validity. This objection was answered by Kuboet al. @15#.
The linear response theory for normal systems was used
cessfully to analyze many experimental results and he
~we believe! from an experimental or phenomenologic
point of view the van Kampen objection to the derivation
linear response has no practical use. However, using a
Hamiltonian approach, we have shown that when the ex
F

f

s

e-

d

es

g

ry
l

f

uc-
ce

f
n-

o-

nent controlling the algebraic decay ofc(t) or q(t) depends
on the strength of the applied external field, large deviatio
from the Einstein relation are found for long enough tim
and finite forces. Thus the van Kampen objection may fi
its applications for systems exhibiting anomalous diffusio

These large deviations under ordinary situations are
found when the transport is Gaussian. For Gaussian sys
the central limit theorem and the law of large numbers gu
antees that botĥx(t)&F and ^x2(t)&0 increase linearly with
time and henceR(t) is time independent. For the anomalo
cases these laws are not valid. Rather an exponentdF char-
acterizes the drift which is directly related to the expone
controlling the algebraic decay ofc(t) or q(t). Hence if the
exponentaF depends on the strength of the field so doesdF .
For this case large deviations from the Einstein relation
expected for finite fields and long times.

A field dependence ofdF is calculated for the SLM
model. Within the framework of CTRW the influence of th
external field onc(t) was calculated. It was shown that th
escape times of electrons from deep traps are reduced wh
field is switched on. Two different field dependent mech
nisms influence the escape from the trap. The first is te
perature dependent and is caused by the energy shift in
different sites the electron can tunnel to. The second is du
a reduction of the action and is more directly related to qu
tum mechanical tunneling. The time scales at which the n
linear effects are of importance are discussed. Generally,
like Gaussian transport mechanisms, these effects bec
important, as time passes by.

It is interesting to mention that an even stronger type
sensitivity ofc(t) to an external bias has already been de
onstrated in@47# in the context of chaos theory. It was show
that under certain conditions, a walker following a determ
istic iteration rule xn115g(xn) can be described by th
CTRW, the functionc(t) being derived from the propertie
of the mapg(x). For nonbiased mapsc(t) decays according
to a power law@27,48#, while for any finite bias and for long
enough timesc(t) decays exponentially.

Our collision model shows that when the second mom
of the time between collisions diverges, the mean linear d
placement is enhanced. Unlike Gaussian transport for largt,
the mean linear displacement is independent of the stre
of the collisions, controlled by the mass ratioe. It is an
important parameter controlling the transition time befo
which ^x(t)&F increases linearly with time and after whic
its growth is enhanced. The transport is dominated by lo
time intervals in which no collision event takes place. Duri
these time intervals the particle accelerates and gains a
velocity. The energy gain during long time intervals betwe
collisions is larger than the thermal energy and, hence,
perturbation acting on the velocity distribution is not wea
This means that linear response theory may be invalid
long times and a strong deviation from the Einstein relat
is expected even for weak fields. Unlike the classical mod
with ^x(t)&F;t, for our enhanced case the criterion for th
weakness of the field is determined by an inequality~86!
depending on time.

Note added in proof.Recently a related experimenta
study of anomalous hole transport in poly~phenlyne vi-
nylene! was published@50#.
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APPENDIX A

Consider a model of symmetric random barriers situa
on a lattice. The transition rates from siten to siten11 and
vice versa are

Wn→n115WnelF /2kBT, Wn11→n5Wne2 lF /2kBT.
~A1!

For this choice detailed balance is satisfied sin
Wn→n11 /Wn11→n5elF /kBT with l being the lattice spacing
In a similar wayWn21→n5Wn21e2 lF /2kBT. The probability
that a particle initially at a siten will jump to the neighbor
n11 before it jumps to siten21 is

P~n→n11!5
Wn→n11

Wn→n211Wn→n11
~A2!

and similarly the probability to jump fromn to n21 is

P~n→n21!5
Wn→n21

Wn→n211Wn→n11
. ~A3!

Therefore the displacement per jump is

^x̃&F5 l ~^Pn→n11&2^Pn→n21&!

5 l K WnelF /2kBT2Wn21e2 lF /2kBT

WnelF /2kBT1Wn21e2 lF /2kBTL . ~A4!

The averagê & is over the random variablesWn andWn21.
We assume that the system is isotropic and so the right h
side of Eq.~A4! is independent ofn. If we assume that the
disordered system can be replaced by an ordered one
have

^x̃&F5 l tanhS Fl

2kbTD . ~A5!

The effective medium approach we used to derive Eq.~A5!
is similar in spirit to the CTRW approach where a disorde
system is replaced by an ordered one@a singlec(t) describes
the evolution and not a family ofc(t)’s which are dependen
on the hopping site#. More generally we can consider als
the disordered case assuming

Fl

2kbT
!1, ~A6!

then linearizing Eq.~A4!

^x̃&F.
Fl 2

2kBT
. ~A7!

This result is independent of the type of disorder. We n
insert Eq.~A7! together with the identitŷ x̃2&05 l 2 in Eq.
~13! and verify that limF→0R(t)51.
.
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APPENDIX B

Using Eqs.~20! and ~24! one can find

^Q~ t !&5expS 2
h

2E21

1

d cosu

3E
0

`

dxx2$12exp@2te2x~12b cosu!#% D ,

~B1!

with cosu5r̂•Ê. Changing the variable,y5x@12b cosu#,

^Q~ t !&5expS 2
h

2E21

1

d cosu
1

@12b cosu#

3E
0

`

dyy2$12exp@2te2y#% D . ~B2!

The integration overy was done in SL,

^Q~ t !&5expH 2
h

~12b2!2

t

3F2
d3

da3 t2ag~a,t!GU
a51

J ,

~B3!

whereg(a,t) is the incompleteG function.
From Eq.~B3! we see that the renormalization rule~17! is

valid for all times t. The asymptotic behavior ofQ(t) de-
rived from Eq.~B3! is †see Eq.~21! in Ref. @17# ‡

ln^Q~ t !&52
1

3

h

~12b2!2

3@~ ln egt!313j~2!~ ln egt!12j~3!#,

~B4!

with g50.5772 . . . , j(2)51.645 . . . , and j(3)
51.202 . . . . Using Eqs.~B4! and ~19! we get Eq.~28!.

APPENDIX C

Ways to generate random variables described by diffe
types of PDFs~e.g., the exponential, the Lorentzian, and t
Gaussian PDFs!, can be found in@49#. Here we show how to
generate random variables whose PDF follows the rule

q~t!;t2~11z! ~C1!

for t→` and 0,t,`. We have in mind cases where th
exact behavior of the PDF for smallt is irrelevant. Two
main methods are usually used@49# to generate random vari
ables:~a! an accept-reject method which is not efficient a
~b! a transformation method. Here we shall give a sim
transformation rule which generates a random variable
scribed by a longed tailed PDF.

We use a random number generator which manufactur
random variableu which is distributed uniformly in the in-
terval 0,u,1. Then we define the transformation~for j
.0)

t5F tanS up

2 D G j

~C2!
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and hence

q~t!5p~u!Udu

dtU5S 2

pj D t~12j!/j

~11t2/j!
~C3!

andp(u) is the uniform PDF. For long times we have
alk

t.

nd

ys

S.
q~t!;S 2

pj D t2~111/j! ~C4!

and hence if we identify 1/j5z our goal is accomplished.
er.

.

,

ys.
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