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For anomalous random walkers, whose mean square displacement behave€(like~t? (6#1), the
generalized Einstein relation between anomalous diffusion and the linear response of the walkers to an external
field F is studied, using a stochastic modeling approach. A departure from the Einstein relation is expected for
weak external fields and long times. We investigate such a departure using the Scher-Lax-Montroll model,
defined within the context of the continuous time random walk, and which describes electronic transport in a
disordered system with an effective exponértl. We then consider a collision model which for the force
free case may be mapped on avyevalk (6>1). We investigate the response in such a model to an external
driving force and derive the Einstein relation for it both for equilibrium and ordinary renewal processes. We
discuss the time scales at which a departure from the Einstein relation is exp&dt@63-651X98)07907-0

PACS numbg(s): 05.40:+j, 05.20.Dd, 82.20.Fd, 02.50.Ey

[. INTRODUCTION long times(high and low frequencigsFor anomalous trans-
port systems this approach is not expected to work so well
Biased and unbiased anomalous diffusions are well estaljto see this insert Eqg1) and (2) in Eq. (3) and assume
lished phenomen@l-8] found in many different systems. §-+§]. As can be seen from Ed3) if the exponentdg
For unbiased processes, the mean and mean square displagepends weakly on the external force then for any finite force
ments of a test particle interacting with some kind of thermaland |ong enough time a |arge deviation from the genera]ized
bath can behave like Einstein relation may be expected.
2 P _ The Scher-Lax-Montroll(SLM) model [16—18 defined
(X*())o~t? and (x(t))o=0. @ within the context of the continuous time random walk
The subscript zero |r\i . .)0 denotes the case when no ex- (CTRW) will be considered here. We show that for this
ternal driving force is applied to the particle. Whés 1 the ~ model, describing subdiffusion of electrons in disordered
diffusion is anomalous, the case<1 is called slow diffu- materials, the effective exponedt is indeed force depen-
sion or subdiffusion, and>1 is called enhanced diffusion. dent. Once this exponent is calculated, it is then easy to find
Such a behavior may be found in the absence of an extern#the time scales at which the deviations from the Einstein
macroscopic driving force. When such an external fdtde  relation are expected to be large.

applied the symmetry of the system is broken and then Bouchaud and Georgéd$], starting from a Hamiltonian
5 description of an unspecified system, give a proof of the
(x(1))r~t 2 generalized relatiori3), based on a linearization procedure

is found. In what comes we call a process for whigh= 8 valid for short times. Their derivation is carried out for fixed

=1 normal process, otherwise the process is considered gysorder. In Sec. Il we show that the generalized Einstein

be anomalous. Normal processes are usually Gaussian whiiglation (3) can be derived from the well known linear re-
anomalous processes are as a role non-Gaussian. sponse theory15]. This derivation is not limited to a fixed

If the system is close to thermal equilibrium at a tempera.disorder, however, it does assume that the underlying sto-
ture '|'7 the genera”zed Einstein re|atic[5,7,9_13 relates ChaSUC pI’OCGSS IS Statlonal’y. ThIS Inspll’ed us to |nVeSt|gate
the fluctuations of the test particle position in the absence dpoth stationary and nonstationary stochastic processes. We
an external field to its behavior under the influence of a conhave found that for a collision model under consideration
stant(time and space independgfurce fieldF, accordingto  here, the Einstein relation is valiginder certain conditions
[5] also for nonstationary processes, provided f#at0.

Violations of the Einstein relation were found for several
5 kgT transport model$§5,19,20. Bouchaud and GeorgéS] have
<Xll(t)>0:2?<x\\(t)>F- 3 already pointed out that for long times and finite forces the
Einstein relation is not expected to be a useful approxima-
Here x| is the component ok along F. Equation(3) is  tion. Without limiting themselves to a specific model they
strictly valid only in the linear response regime which might predict a possibility of a crossover from a short time behav-
be found wherF—0. ior with (x(t))g~t° to another long time regime with

When the external field is finite though weak and for sys-(x(t))s~t. The subsection in Sec. Il uses the SLM model to
tems exhibiting normal diffusion and transport the Einsteininvestigate a different type of departure from the Einstein
relation between the diffusion and mobility coefficients relation and gives a detailed description of its nature for a
[14,15 is useful in describing transport for both short and specific model.

1063-651X/98/58)/129615)/$15.00 PRE 58 1296 © 1998 The American Physical Society



PRE 58 GENERALIZED EINSTEIN RELATION: A ... 1297

We were also motivated by recent experiments whichFor a stationary process, the functitn(t’)v(t”)) depends
have checked the validity of the Einstein relation for twoon the time differencédt’ —t"| only. Using the stationary
different types of slow diffusions withdc<<1 and §<1.  condition and the convolution theorem for Laplace transform
Qing et al.[21] measured a non-Gaussian diffusion in semi-it is easy to show that in the Laplace domatna-(u)
conductors. The experiment indicated the correctness of Eq.

(3) to within the prefactor of the order one which could not . =R
yet be determined exactly. Amblaret al. [22] measured <X(u)>F:m<X2(U)>O- (6)

both (x?(t))q and (x(t))r for magnetic beadgdiameter

pmt) on a polymer network. We have found d&3] that  Retyrning to the time domain we get the generalized Einstein
the experiment of Amblaret al. is in agreement with the rejation (3). Equation(6) is assumed to work well both for
generalized Einstein relation. As far as we know this is the,qormal and anomalous diffusions and for different types of
first direct experimental verification of the generalized Ein-gisorder.
stein relation for an anomalous system. In deriving Eq.(6) it was assumefll5] that the perturba-
Section 1V considers a stochastic collision mof#4,23  {jon has been switched on in the infinite past, when the sys-
resulting in an enhanced diffusion. In this model a particle ofier; js described by a canonical density matrix. It was also
a massM collides at random times with heat bath particles 3gsymed that the process is stationary, meaning that prob-
whose mass isn. An important parameter controlling the apilities describing the process are invariant with respect to
strength of the collisions is the mass raéiem/M. We gen-  time shifts[15]. According to Ref[15], the stationary con-
eralize Drude’s approach to the case of a long tailed probyition is satisfied if the environment is in a stationary state
ability density function(PDF) of the independent time inter- \yith a constant temperature, pressure, etc., and if the particle
vals between collision events. The dynamics of the partlcl%pendS long enough times interacting with its environment.
between collision events are Newtonian. In the absence of an \yje may ask, how long is long enough? One expects that,
external force and under certain conditig@s], the collision it 5 yelaxation time exists, one should wait for times long
model can be considered as belonging to the same universglompared with this time scale. However, for some processes
ity class as the ey walks[1,2,26-28 since it produces the which result in anomalous diffusion no such time scale ex-
same asymptotic time behaviors of the mean square displacgys. Thus we believe that an additional insight into the va-
ment. lidity of the Einstein relation is achieved by considering a

Here we consider the influence of an external force anginetic approach which assumes a stochastiton-
derive the Einstein relatio(8) for this model. This type of a  {amiltonian description of the system.

model allows us to discuss the limiting cases of strong
e=1 or weake<1 collisions. We showinter alia, that un-
like Gaussian transport processes, the mean displacement

(X(t))¢ in the long time limit does not depend on the |y the decoupled version of the CTRV®,8,29 which
Str-ength of the CO”|S|On$|.e., itis |ndepe-n.dent of the .maSS was introduced by Montroll and Weiss over 30 years ago, a
ratio e=m/M). However, the parameteris important since  walker hops from site to site and at each site it is trapped for
it controls the transition from the short time behaVlora random time. For this well known model two independent
(x(t))g~t, to an enhanced(x(t))g~t’F,8g>1, behavior PpFs describe the walk. The first is thgt) PDF of the

. CTRW

valid for long times. pausing times between successive steps. The second one is
the £(x) PDF for the displacement of the walker at each step.
Il. ANOMALOUS DIFFUSION, LINEAR RESPONSE Shlesingef30] showed that anomalous subdiffusion arises if
THEORY, AND STATIONARITY (1) is long tailed with its Laplace transform behaving like
The linear response theof{5] is used here to show the R
conditions under which the generalized Einstein relat®n P(u)=1—Aru%, with 0<é8:<1, W)

holds. For simplicity we shall consider here a one dimen-
sional case. A test particle, described by an unspecifiegheaning that even the first moment of this PDF diverges.

Hamiltonian, moves under the action of a perturbatituy, The first two moments of the hopping length PQ¥X),

= —xF(t) whereF(t) is an external time dependent force. are assumed to exist, so that its Fourier transform for sgall
AssumingF(t) =F 6(t) where4(t) is a step function, linear penaves like

response theory yields the average velocity of the test
d ‘ Ha)=1+iG(e— 3R+ - ®)
S (FikeT) [ et @ SFLAC I

where (v(t")v(0))q is the canonical velocity correlation The parameter8g, ¢, (X)¢, and(x?)¢ determine the long
function at thermal equilibrium foF=0. The mean square time behavior of the mean line&k(t))-, and mean square
displacementx?(t)), is also related to the correlation func- (x*(t))g, displacements of the walker. They may, in prin-
tion according to ciple, depend on the strengkh of the external field. When
the medium in which the walk is performed is on average
isotropic and wherfr =0, it follows from the symmetry con-

siderations thafx),=0.

t [t
(X3(1))o= fo fo(v(t’)v(t”))odt’dt”. (5)
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According to the results derived i8] [see Eq.(2.82b
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do not commute. The long time Einstein result is reached if

therein the mean square displacement of the walker in theve take firstF—0 and only thert— oo,

absence of the field is

%
2 — /2 _
<X (t)>0_<x >OAOF(1+ 50) . (9)

When the walk is biased, we haysee Eq.(2.81h in Ref.
(8]]

XO)e=Xea T 1750 (10)
We define now the dimensionless ratio
2
R(t)= (X“()o 11)

2kgT (X()f '

Calculation of ¢(t)

This subsection shows, for a specific example, how a de-
pendence of the exponedt on an external force may arise.
Scher and Lax16,17] were the first to calculate the function
(1) for an unbiased system and to use it within the CTRW
for a description of hopping electron transpg@re., current
flow in semiconductors such as Si and Ge due to tunneling
between impurities They showed that for large times

W(7)~(In 7)% 74+ (3 7>2, (15)
where7 is a dimensionless time;=4wR§’ND with Ry being
half of an effective Bohr radius arid the density of donors
in the system. Unlike the PDF7) the first moment of the
PDF (15), exists. The logarithmic dependence of the expo-

which according to the Einstein relation is expected to benent (/3)(In 7)? on time guarantees thai(7) behaves like
time independent and satisfiBt) =1. However according a power law for long times.

to Egs.(9) and(10)

<2
F (oA (1400) 5,

o= 2ksT (X)eAol (1+ 8p)

(12

ForF # 0 the quantityR(t) varies with time if6g # &,. Equa-
tion (12) shows that for any finite force, however smalé.,

even whenFI/kgT<1 with | being a characteristic micro-
scopic scalg large deviations from the Einstein relation will
be found for long enough times. Such a behavior is neve
found for Gaussian diffusion processes for which the ratio

R(t) is time independent and for small fiel&gt)=1. Also

notice that for Gaussian processes the r&{i) can be Tay-

lor expanded in powers of the external forEearoundF

For calculations of transient photocurrent one can ap-
proximate Eq.(15) by ¢(7)~ 7 12 with [18]

1
o= §17(In 2, =0(7) (16)

and 7; is a transient time. Scher and Lax have assumed the
validity of the Einstein relation and with it calculated the
complex ac mobility using Eq15). Thus their calculation of
|g/x(t) is for F=0.

An external field can strongly influence tunneling as ob-
served in different physical effects.g., cold emissioh31],
Landau-Zener breakdowf32], and electron scavenging
[33,34)). Here we shall calculate/(7) using the same pro-
cedure as used by SL for a system subject to a uniform bias.

=0 the coefficients being independent of time, whereas thi
is not possible for the anomalous processes Witk 6.

Let us assume that the Einstein relation is valid wken
—0 and check what it implies for the relation between the

We shall show that when an external uniform fieidis
switched on, the dimensionless densitys renormalized as

. . . . n
microscopic parameters which enter the CTRW modeling. nﬂm, (17
This means that we take lin,oR(t)=1, which implies
|im;:_>05|::50, |im|:_,0A|:=AO, and with
F o (x% eERy
IMs—=—=—= (13 =|—, 18
F-02KeT (X)g A kgT (

Comparing between this equation and Eg).we notice that the functional form ofy(7), Eq. (15), remaining unchanged.
Eq. (13 is an Einstein relation for the microscopic param- Figure 1 shows the ratio between the PRf(7) for
eters of the CTRW model. In Appendix A we show in a 70 and the field free result of SLM for the PD#(7)
straightforward way that Eq(13) is valid for a model of (below the subscripg is suppressed We see that for long
symmetric random barriers thus giving some justification toliMes this ratio tends to zero. In the SLM theory the power
the correctness of E¢13) and hence to the Einstein relation. 12w behavior ofy(7) for large times gives the low frequency
The important assumption made in Appendix A is that thePehavior of the anomalous ac conductivity. From Exj7)
microscopic stochastic dynamics satisfies detailed balanc@d Fig. 1 we conclude that there exist long times for which
which is the condition needed to ensure validity of the genihe sensitivity ofy(7) on 8 becomes important and must be
eralized Einstein relation. taken into account when analyzing experimental results ob-
It is interesting to emphasize that the two limits of long t&ined from finite field experiments. _ _
time and weak field in Eq(12), When an external field reduces the potential barrier the
charge carrier has to cross, the tunneling rate increases and
this in turn may have a strong influence on the transport.

lim limR(t)# lim lim R(t), S I . : ! |
This increase of the tunneling rate is consistent with our

F—0 t—x t—ow F—0

(14
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1 %HIH‘ T I\IIIIIl T T T TTTT T TTTTIm LLLILALLL T T T TTTI| T TTTTIm T \IHI% A(r) — Ao(r) + eE. r, (22)
L B, .
01 P _\:\, where the first tern 4(r) is the energy difference due to the
001 ° % E random potential and the second term is caused by the exter-
0,001 F P 3 nal field E. We consider length scales at which
o000t £ ] |Ao|>|eE 1], (23)
= E 6. 3 . . . . .
g j0sp 4 with |A,| being the variance of the fluctuating functidrr).
x 3 E The calculation is carried out assuming that the congtagt
= 107 can replace the dependent functiorh,(r). The agreement
1ok - between theory and experiment found by SLM is the main
g E justification for this approach. Equatidg1) is replaced by
1o-eg 3 the simple form
o ; W(r)=W ek 24
_HIIH‘ L IHIIII| L IHIHIl 1 I;.HHI' 1 HHIH‘ L IIHIH‘ ‘.*\ IHIHIl 1 HIIHIl 1 \HHH‘ ‘\\ L ;m;

110 100 1000 10* 10° 10° 107 10° 10° with

FIG. 1. The ratioy(7)/ () vs 7 for different values ofs and . 32 [Ao
7=10"2. For D donors in Si SL useRy=12 A thus =102 W =W Ry ex " keT ) (25
corresponds thNp=4.610"1" cm 3. For T=3 K, 8=0.15 implies
the field E=323. Vicm. .The. intersection of the three curves, 1 is an appropriate mean value. Equati@) is valid for
Yp(7)o(7) =1, Is explained in the text. weak fields satisfyingB<1. W,, is an attempt frequency
o ) whose dependence on the external field is neglected.
result(17), which implies that for fixedy andT, y(7) de- A simple way to find the behavior af(t) is to notice that

cays faster to zero as the fieﬂii!ncreases. This behavior is hq integrand in the exponent in EQO) behaves like a step
in agreement with the numerical simulatiof35]. Scher function

[36], in the context of recombination processes, pointed out

that the exponents are functions of the external fields. Here 1, W(r)t<1

the dependence of the PO 7) on the field is found and the 1—exgd —W(r)t]= (26)

approximation(17) is discussed. 0, W(r)t>1
According to the SLM procedure the probabili®(t) is

introduced, of finding an electron in a given trap at titrié ~ and then using Eq24) to show that

it has been there at time=0. This probability decreases

with time due to tunneling hopping to surrounding traps. _ 23 3 U
Then according to Eq0) in Ref. [17], In{Q(D)) z(n 7 (1- %2 @7
~d(Q(1)) with 7=W)yt. An accurate approach given in Appendix B,
P(t)=— dt (19 shows that Eq(27) is asymptotically exact to within a nu-
merical factor.
with The exact analysis shows that
(1) ne’ i _
(Q)=exp| —Np | d¥r{1-exf-W(Nt]}|, (20 g gzz(In e7n)3(ern) 1 WLIA-F e
Wy (1-59)
(28)
whereW(r) is the transition rate between donors separated
byr. with e¥=1.78. This form replaces Ed15) derived forE
The function W(r) has been calculated by Miller and =0. We see that the effective exponent is field dependent,
Abrahamg 37]. Using SLM notation and therefore the response to the field is nonlinear and as we
have discussed in the preceding section the Einstein relation

r\ 32 A(r) for long times and finite fields cannot be used to analyze the
W(r)zW(’)(R—) A(r)exq—r/Rd)exr{— ﬁ} transport properties of the system. In Fig. 2 we show the
d B (21) PDF (7) equation(28) vs 7 for fixed . We observe a

crossover from a power law behavior ¢{ 7) valid for 8
whereA(r) is the energy difference between the traps. Equa=0 to an exponential decay found whgna-1.
tion (21) was derived using the variational principle. It ap-  Using Eq.(28) we define now the ratio
plies when the process of phonon absorptidr’=0) domi-

nates. Equation(21) is an approximation valid when gp(7) 1 1 BA2-pB%) 3
AlkaT>1. woin @R 3 g e

There are two contributions (29
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e whereU, is the characteristic energy barrier the charge car-

i A B B rier has to tunnel undegisee details i138]). The additional
(B T 4 term eE-rr/RyU, appearing in Eq(32) can be easily de-
- ~ ~ 1 rived by calculating the action integral under a square poten-
r N T~ 7 tial barrier which is slightly tilted due to the external field.
08 I N S ] Equation (32) is valid for not too long distances

gl N N i <U,/e|E|, the second term in the exponent being a pertur-
i N TN g0 bation to the first one. A calculation similar to that which has
i N S led to Eq.(27) shows that fore=eRy|E|/U, satisfyinge
06 [~ N N <B

UL B
—

Yol 7) /Yol T)
/

I ,\\ $=0.15 | B _1 7 3 Be 4
04 - N 4 In(Q(t)>—3 —(1_B2)2(In 7)°+ 77—(1—/32)2”] Teooe.
| (33

02 - . - For weak fields the second term is a quadratic function of
- S~ |E|. This second term is smaller than the first one when

i 1 BE In 7<1. (34)

10 100 1000 10 10: 106 107 108 10°

Thus for not too long times our neglect of the field dependent
corrections to the action integral is justified and E2f) is a

FIG. 2. Dimensionless PD§(7)/W,, vs 7 for »=2.1710° and . .
sound approximation.

different 8 values B,=0, B,=0.83, 8,=0.95, ;=0.98, B,
=0.99). The solid curve presents the exponential REEF)/W,,
=exp(— 7). Notice that the longed tailed behaviorfr) found for IV. COLLISION MODEL

£=0 switches into an exponential decay f&s- 1. In the preceding section, the CTRW was used to investi-

for e7r>1. F fixed short time this ratio i . . _gate a system which exhibits subdiffusion. We shall now
ore’r>1.or afixed short ime this ratio IS an INCreasing 5 yyrass 3 collision model which naturally leads to an en-

function_of,B whil_e for a fixed long _ti_me t_his function is a hanced diffusion withs>1 in Eq. (1) [24,25.
decreasing funct'|on .Oﬁ' The transition timer; between A classical test particle with a masé moves in a one-
these two behaviors is found, <1, to be dimensional space and interacts with bath particles of a mass
3\ 13 m. At random, the test particle is elastically kicked by a bath
Te=6€" Vexp{(;) , (30) particle. According to the energy and momentum conserva-
which is independent g8. It is easy to see that f@B<1, 7,

tion laws, the change of the test particle momentum due to
theith kick is described by the equation

also satisfies the conditi_anﬁgrc)/¢0(rc) =1. All these fea- P =P+ uoPi, (35)
tures can be observed in Fig. 1 where we &@@dor 7<<7
(7> 7¢) the ratio(29) increasesdecreaseswith 3, (b) for all where
three choices of3 the conditionyg(7c)/ ¥o(7c)=1 is ful-
filled at the same point,. 1-e 2
At very large times the contribution tg(t) is from tun- =77 MeTrye

neling to very large distances. However, according to Eg.
(23) for these large distances our analysis is not valid. Transand e=m/M. Here p; and p;" indicate the values of the
lating distances into times using E4), we find that our momentum of the test particle just before and after the col-
results are expected to be valid if lision labeledi (i=1,2,...).1; is the momentum of the
kicking bath particle. The coordinate of the test particle is
not changed by the kick. Here we also assume that the dura-
tion of a collision event is much shorter than any other time
appearing in the problem. An external uniform for€eis
For longer times the external field cannot be considered as supposed to act on the test particle. This force accelerates the
small perturbation. test particle during the time intervals between collision
We now discuss further the meaning of the approxima-events, according to Newton's laws of motion.
tions made above. Equatid@4) considers the influence of Our model assumes that the time intervals which
the external field on the energy difference between sftes  elapse between thé{ 1)th andith collision events, are in-
A/kgT term) and neglected the temperature independent independent identically distributed random variables described
fluence of the field on tunneling. Instead of EB4) one may by a yet unspecified PDF(7). This PDF is assumed to be
consider the tunneling rate independent of the mechanical state of the test particle, and
does not change in the course of the system’s evolution. The
[T} _[eErr| [eE-r (3 Mmomenta of the kicking bath particlgs are also indepen-
' dent identically distributed random variables; their statistical

< 2o 31
TEXW. ()

W(r)=W,ex
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FIG. 3. Drift of a test particle which encountered 200 collisions.  F|G. 4. Momentum of the test particle vs time for the same
Dimensionless units witk=1, F=1, mkT=1, and an accelera- regjization as in Fig. 1. Notice that in the time interval 400

tion F/M =1 are used. The dots denote the collision events. Notice- 520 the momentum strongly exceeds its thermal momentum
the long time interval 408t<520 in which no collision takes \yhich is set to be unity.

place; this time interval is roughly 20% of the observation time.

. . _ . Figure 4 shows the momentum of the test particle vs time
properties are determined by the Maxwell PRP;) witha ¢4 c= 1. One can see that the particle gains a momentum far

i a2\
vanishing mean and a variancg; >—kaT-_ . beyond its thermal momentumy,=+MkgT which corre-
In the absence of an external force, with the exponentlagponds topy,=1 in the dimensionless units we use here.

PDF, q(7), and in the strong collision limit {=1) this  Ntice that this deviation occurs only during the long colli-
model becomes the well known Drude model. The case 0jonjess time intervals, hence the departure from a close to

long tailed PDFsg(7) and F=0, was investigated in our
paperg24,25. This leads to an enhanced diffusion with 1 : S S :
in Eq. (1). Here the version of this model considered is when
the test particle is driven by an external space and time in-
dependent forcé .

Figures 3—-5 show trajectories of the test particle, when i
for long times 100

2
q(n)~ 72 (36

For this PDF all integer moments diverge and we are dealing
with a situation very different from the classical Drude 90|
model. Appendix C describes an algorithm producing time "
intervals whose PDF decays algebraically with time, B6) L
being an example. Long time intervals in which no collision
event takes place are shown in Figs. 3-5, a characteristi
feature of the stochastic process. In Fig. 3 we see a drift of
the test particle caused by the external fofcen the strong or %
collision limit e=1. One can observe that during the colli- L1 . L L -
sionless time intervalée.g., 406<t<520) the particle coor- 0 200 400 600
dinatex increases quadratically with time as expected for an t

accelerating test particle. In time intervals in which many g 5 Momentum of the test particle vs time in the weak
collisions have occurred the drift seems to increase linearlyojiision limit e=0.1. All other parameters are identical to those
with time. As we shall show here the averaged drift generallysed in Fig. 4. Notice that roughly ten collisions are needed to relax
follows (x(t))g~t°F with 1< §p=<2, meaning that the mean the test particle momentum from its maximal value, gained during
displacement behavior is intermediate between the quadratifie long collisionless time interval (480<520). This should be
and linear laws. compared to the single collision needed for the casd, Fig. 4.
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equilibrium state would not have occurred had the collisions {Ag(71), AL(T1,P1,72), - - A(T1,P1s - -+ Tss1), -+ -}
been distributed in a uniform wale.g., hadg(7) been an (40)
exponential functioh Figure 5 exhibits the same realization

as in Fig. 4 but for the weak collision limig=0.1. We see  of functions over the state space. Here

that the relaxation of momentum occurs only after several

collision events instead of a single collision for the strong

collision case, Fig. 4. As(T1,P1, - - - \Ts41)

is the quantityA calculated using the assumption that the

) o ) ) particle has encountered a sequence f collisions
The following definitions and mathematical tools will be {P1, ... Ps with the bath particles and the time intervals

used below. The sample space consisttlph non-negative grefr . r...}. Then the average value is determined by
integers which is the number of collision events which oc- e equation

cur during the timet. (2) For eachs there exists a set of

+1 real time intervalsr (1<is=s+1; 0<7<)

A. Definitions

<A<x,|o>>=<Ao>+§1 (A(X,P)) (41)

{T1:70s oo \Tiy oo Tor1)-

The time intervalr, is the time elapsing between the start of jy which each term is the average valueAtfi,p,t) calcu-

observation {=0) and the first collision event. It is called |5teq under the condition that collision events have oc-
the first waiting time.r; (i#1ji#s+1) are time intervals cyrred. Then

between collision events called waiting times., ; is the
time between thesth collision (i.e., the last collision in the
sequenceand the time of observatian (3) For eachs there (Ag)=Ao(1)Z(t) (42)
exist a set ok real moment®; (—o<P;<»),
and fors=1

{ﬁl!ﬁZ! e vﬁii . "1ps}

i:H2 fo q(7)dr,

o0 d o
of the kicking bath particles. (AS(X,p)FJ 2_9[ h(ry)d7y
. Ny . . —&T J0
The time intervals appearing in the problem are assumed
to have the following properties. " s ..
(1) The waiting times(including the first ongand 7, ; xf W(rsﬂ)drsﬂ{]_[ f fm(bi)dT)i}
are defined in the domain 0 i=1J -

s+1
s xexp[ig(z Ti_t)]
2 Tt (37 =

XAS{...,ﬁi,Ti...,TS+1}. (43)

(2) The first waiting timer; is an independent random . ) )
variable whose statistical properties are described by thEl€re fm(Pi) is the Maxwell-Gaussian PDF. The averaging
PDF h(r,). procedure(41)—(43) implies summation over the numbesr

(3) The waiting timesr, (1<i<s+1) are assumed to be of the collision events during the observation timeas well
independent identically distributed random variables whos@&S integrations over all PDFs of the time intervals between
statistical properties are determined by the RiSF). the kicks and over the momenta of the kicking particles. The

(4) The probability that no collision event took place in fePresentation

the timerg, is, fors=1,
s+1 1 w s+1
5(2 ri—t)z—f exp{ig(E ri—t)}dg (44)
=1 27) — o i=1

of the 6 function in Eq.(43) ensures that the sum of all time
(5) The probability that no collision event occurs in the intervals equals the observation time, Egj7).
interval (07;) is The choice of the timing of the start of observation deter-
mines the functior(r;). This issue is discussed in the con-
text of renewal theory by39] and in the context of the
Z(r)=1- fﬁh(t)dt. (39) CTRW in [6,40,4]. The SLM model predicts different ac
0 conductivities depending on the choiceldfr) [40,41]. If a
system is considered to be described by a constant raiaf 1/
To calculate the average value of a physical quantitytransitions(jumps, collisions, etg, then for such a process,
A(t,x,p) one has to consider the sequence called an equilibrium renewal process, we have

Ts+1
Wre, ) =1- fo a(bat. (39
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v =p.+pf, 49
1_ f 1q(t)dt pS pS pS ( )
0

hed 71)= — (450  where the second term

S

An equilibrium renewal process can be defined only if at _i -
¥ P Y pl=3 ui '(uMar+uzP)+Mars,y  (50)

least the first moment af(7) is finite. However, PDFs(7)
with diverging first moment are also to be considered, and

for these an equilibrium renewal process cannot be definedioes not depend on the initial momentum. This information
That is why we shall consider also the ordinary renewal pross kept by the first ternp.= u5po.

cess Now the Laplace transform of the average momentum

hol(71)=0(71) (46) (p(1)=(p"(1)+(p'(1)) (52)

for which the observation has started just after a collisiong cg|culated. Here according to E@1)
event.
To choose the correct renewal process to model a physical . .
process one needs detailed information on the way the sys- fronn ¢ v -
tem has been prepared. Thus, for example, for photo carrier (p (U)—SZO (ps and <p'(t)>—go (py (52
experimentg18] (for which §<1) the ordinary renewal pro-

cess is chosen since the electrons or holes are excited alyng the meaning of the average was explained in the
=0 when the process begins. If the process has peen 9O0I'feceding subsection. It is easy to see using the averaging
on for a long time prior to the start of the observation of theprgcedure that all terms in E¢50) which depend of; will
process and it exists then it is an equilibrium process. For not contribute to the average since the bath particle momen-
Gaussian transport systems and for the dc case these diff§(ry has zero mean.
ences are of no practical importance, however, for the gjyce we are interested in the averaged momeanm
anomalous diffusion our collision modéor which 6>1) g4 (50), is inserted in Eq.(43) with the identification
indicates a strong sensitivity of the results to the way theA{ B }:pf{ B }. Using the transforma-
system has been prepared initially. This may set limits on OU{iS Lot e st e ~

. . .~7tion ig= —u, carrying out the integrations over andp; as
abilities to predict the behavior of anomalous systems smc\e;Yr g ying g [ i

the inf . how th tem has b di ell as summing over as appears in Eq50) one arrives
€ information on how the Systém has been prepared 1S NQia . 5 straightforward calculation at the following results.
always sufficient to determinie(7).

For the realization in which the test particle experiences no

collisions,s=0, one has
B. Average momentum

We shall now calculate the mean momentum of the test e duf  dZ(u)
particle moving under the action of an external force. The <p£=0(t)>:|: _( — ]exp(ut). (53
mean momentum allows one to find the mean displacement, ~iee2 i du

which is our main goal in this section. According to the
averaging procedur&1)—(43) we have to express first the Fors=1
momentum as a function of the time intervals between col-

lision eventsr; and momenta of the kicking bath partie. i du
This is done by using the stochastic map (p;(t)>=J ﬁ@;(u))ex;:(ut), (54
—joo
P 1= (P +Marg)+ uoPii1, (47 \ith

which is obtained from Eq.35) for the constant acceleration

a=F/M. This map relates between the momentum of the . s dh(u) a1, A
test particle just after thei ¢-1)th collision event and the  (Ps(U)=F} w1} = —5 =8> (WW(U)
momentum of the test particle just after thin collision
event. At a timet=0, the initial momentum of the test par- 1—,@*1 ~ dow) .., -
ticle is pg = po. M h(u)] = —5 |8 (WW(W)
The momentum of the test particle which encountesed !
collisions is S dW(u)
+RWas W] -~ (- (55
Ps= p;— +Margiq, (48)

Here the functions with hats denote the Laplade- (1)
where we have taken into account the driven motion of théransforms and the integration overappearing in Eqs:54)
test particle in the final time intervak, ;. Then using Eq. and (53) is identified as the inverse Laplace transformation
(47), Eq. (49) is rewritten as (see[24] which elaborates on this pojnt
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According to the formul&41) we sum over the number of 1-g(u)
collisionss and get the averaged momentum of the test par- ﬁe,{u)z —, (63
ticle in u space, uz
* . and
(p'(w)= 2, (ps(w)
A ] Zeq(u)=£[1—[1_(ﬁw ] (64)
dZ(u) dh(u) | . 1 u U7
=FH— au +[— au W(u) —1_ Q(u))
R H Inserting these three equations in E§6) we have
+ pm1h(u) —M}\Mu)
1 du ) F [, (-p) [1-4W)]
(X" (u))p= 51— — N ., (69
1 )L MT uT (1)
X +h(u
[1-9(w][1—p18(u)] 1-q(u) then using Eqs(59) and (62)—(64) we find
dWi
- d(u”) ] (56) L [(_Qow) B-a@l ] o
P ma?| ur [1- (W)

The dependence of the mean momentum on its initial _ _
value p, is calculated using the above procedure for For the ordinary renewal process according to @) we

ps=u3po. Equation(43) results in use
(Ps=o(U))=PoZ(u) (57) Ror(u) =8 (u) 67)

for s=0 and and
(Ps=1(U))=popsh(u)gs~*(u)W(u) (58) Zodu)=W(u). (68)

for s=1. Summing over the number of collisiosgaccord- Then using Eqs(56) and(62) we find

ing to Eq.(41)] yields

- dg(u) 1—p
- (X (u))p=——| 1+u - - ]
<pi(U)>:po Z(U)+Ml h(U)W(Ll) ] (59) Mu 1 du [l—q(u)][l—/.qu(U)] 5
1- pyG(u) (
Equations(56) and (59) give the mean of the test particle and
in u space,
i ~i 1-g(u
(B = (P (W) + (P (). (60 P e L 70
UM 1= uqG(u)
This equation is quite general and can be used for various
choices of the first waiting time PDR{( 7). A straightforward limiting case of these equations is when
the bath particles are massless, namely0. Then there is
C. Mean linear displacement no interaction with the bath and the two results for the equi-

librium renewal process equatiof85), (66) and for the or-

lThe rrllean Iineakr] diipla:ceme(vt(t)f>F is fofunﬁl using ad' dinary renewal proces$9), (70) are identical. Where=0,
relation between the Laplace transforms of the mean 'S,Zlel and then for both processes we find the obvious result
placement and the averaged momentum

(X(U)>F=<X'(U)>F+(Xf(u)>F:<F:J(|\u/|)> (61) (X(W)e=(X'(W)e+(x"(u)e= A

——+—, (7))
M Mu®

in which Eq.(60) allows for a separation of the parts depen-\hich describes an accelerating particle with an initial mo-

dent and independent of the initial momentpg mentump,. Generally fore#0 the two processes do not
Considering the equilibrium renewal process, the '—aplac‘foroduce the same results even in the long time limit.
transforms of Egs(38), (39), and (45) are found using the

convolution theorem o . . .
D. Waiting time probability density function
W(u 1-4g(u) 62) Below the mean linear displacement is investigated for
u several special choices of the waiting time PIOE7),
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([ 1—(Au)“+cy(Au)?, O<a<l
1+ (Au)in(Au), a=1

(u)={ 1=7UtC,(7U) "+ Co(7U)?, 1<a<2
1—7u—c,(70)?In(7u) + c,(7Uu)?, a=2

(1= 7u+ci(Tu)?+c,(7U)*, 2<a<3

(72

wherec,, ¢4, andc, are dimensionless constants. These

PDFs have the property that far<1 all their moments di-
verge, for K a=<2 the first moment

—__dg)
7 du

(73

u=0

exists but all higher moments diverge, fox2<<3 the first
and the second moment

— daz(u)
T =
du?

=2c,7° (74
u=0

exist but higher moments diverge. The Udg2,5 of such
PDFs in the framework of vy walks in a wide variety of
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tion to investigate the driven motion using these types of
functions with the collision model. Choosing PDFs with all
converging moments leads according to the central limit
theorem and law of large numbers to a Gaussian behavior;
these PDFs are not discussed in this paper.

E. Asymptotics of (x(t))g

The long time(smallu) behavior of(x(t))¢ for the equi-
librium and ordinary renewal processes is now considered.

1. Equilibrium renewal process

An equilibrium renewal process can be defined only if the
average timer between the collision events is finite. There-
fore only PDFs witha>1 are considered in this subsection.
It will be shown later that the asymptotics of the mean linear
displacement is determined only by the part which is inde-
pendent of the initial momentum, so that

(x(1)e=(x"(1))r (75
in the long time limit. The correction due {a'(t) )¢ depend-
ing on the initial momentum will be discussed in the next
subsection.

Inserting the Laplace transformed P@fu) (72) in Eq.
(65), using the Tauberian theorem to—t transform the

systems is now well established and this gives us a motivanean displacement, we find

( = 33—«

Ca_T2 t 1—€\
F 1-
(X(t))r={ M{(cl?t)ln ; +(c2+ Zee)ﬁ]’ a=2 (76)

=

\ M

+1_6_ 2<a<3
Cq P T, o .

We notice that for K a<2 the(x(t))g increases faster than transport properties of the test particle are not controlled by
linearly with time (transport is enhancgdvhile when the the strength of the collisions but rather by long time intervals
first two moments of the times between collisions efig., in which no collisions occur.
a>2) (X(t))r increases linearly in time. A faster than linear  For classical collision models for which all the moments
transport is caused by the long time intervals when no colli-of the times between collision events exist and which are
sion event takes place. These time intervals can becomeontrolled by the mass ratio of the light bath particle to
longer for smaller values of the parameter We also see heavy Brownian particlée.g., the Rayleigh pistofi4]) the
from Eq. (76) that the test particle accelerates and gains endiffusion and the mobility coefficients always depend on the
ergy in spite of the collisions with the bath particles. mass ratio. For our model this classical behavior corresponds
For 1<a<2 the leading term in Eq.76) is independent to 2<«, when the mobility, according to E476), is
of e characterizing the collision strength, for example, for
very long times

() =i( cot 5)7 (79)

B 1
K=F " dt M 2e

F c,m (t

3—a
<X(t)>|::mm ) , l<a<2. (77

T and so unlike the enhanced case the transport coeffigiént
The fact that for long timegx(t))r is independent of the indeed controlled by the mass ratig as well as by the

mass ratice is a unique feature indicating that the asymptotic(existing first two moments ofy(7).
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Notice also thaju=0 sincec;=1/2 and G<e<<cc. To see ([ F
= —(1—a')t2, O<axl
why ¢;=1/2 we use Eqs(73) and (74) to write 7°— 7 2M
=(2¢c;—1)72=0 and hence by definition,;=1/2. The mo-
bility decreases withe reaching its minimunifor constant F oot _1
c,) when e—. Then the test particle is surrounded by  (X(1)e={ oM IN(t/A)’ a=
heavy bath particles and each collision just changes the par-
ticle velocity direction. Whert,=1/2 and sor*=72 mean- Fc2a-1)[t)>"
; ; : - S 1<a<?2.
ing that there are no fluctuations of the time between colli M T(4—a) |7 :
sions (i.e., the collisions follow one after the other with a \ T 81)

constant time interval elapsing between collision eveaitsl
in addition whene—c the particle bounces back and for- Again we see that the asymptotic result is independernt of
ward between two infinitely heavy walls and=0 as ex-  For =2 the result coincides with that for the equilibrium
pected. renewal proces$76). The behavior of(x(t))g~t? for 0O
Equation(76) for 1<a<2 contains also linear in time  <4<1 can be understood by noticing that for this process,

corrections to the enhanced drift. The first, enhanced, terthere exist |0ng time interval®f the order of the observa-
becomes larger than the second term only for a large enougibn time t) during which no collisions take place. During
time, this interval according to Newton’s law of motion~t? and

the quadratic behavior dix(t))r is found. Comparing Eq.

(81) with Eq. (76) for 1<a<2 we see that the mean linear

t 1—e+2ec, I'(4—a)]H? @ displacementx(t) )¢ behaves differently for the equilibrium
—-|> v 1<a<2 and ordinary renewal processg@ke prefactors are noniden-
T 2e Ca : nary re b ° P . :

(79 tical). This implies that the long time behavior gf(t))r is
sensitive to the statistical properties of the first time interval
in the sequence.

t 1—€e+2ecC
In| —|> 2 a=2. 3. Dependence ofx(t))e on
p 2eC, - bep F Po

Now the dependence of the mean linear displacement on
the initial velocitypy/M of the test particle is discussed. For

Thus although the enhanced behayeft) )z ~t3~* is inde-
pendent ofe as shown in Eq(77), the parametee controls
the time of transition from the linegr(x(t))r~t] to the
enhanced(x(t))e~t3~¢] transport.

The limit e<1 can be considered as an example. In this
case, corresponding to the Rayleigh limit of the model, the
heavy test particle is kicked by light bath particles. The con-

dition (79) reads now

t| [[(4—a)|¥2"
> , 1<a<2
T 2ec,
(80)
t 1
In| —|> , a=2
T 2€Cl

and the transition time becomes long. It can become esp
cially long when« approaches the critical value 2, so that
one should wait an extremely long time until the onset of the

enhanced transport.

2. Ordinary renewal process

the equilibrium renewal process Eq66) and(72) yield the
long time behavior

(po—c‘”? tee 1<a<?
MTG@—al7 *
: t
(X'(t))g=¢ %cﬁln(;), a=2 (82

T
1_

%(Cl"" —266)?, 2<a<3.

\

For 2<a< 3, the initial velocitypy/M leads only to a small
(time independentdisplacement of the test particle whereas
for 1<a=<2 the initial condition results in an averaged dis-
placement which increases with time.

The strong influence of the initial conditign, on {x(t))¢
for a<2 is due to samples where no collision event has
é@ken place during the time of evolutidn To see this we
rewrite Eq.(66) as

Poia [1_Q(U)]2

pOZeq(u) N
MuS7[1— pa§(W)]’

KW)e=—11

(83

where Zeq(u) is defined in Eq.(64). The first term in the

_ For the ordinary renewal process we use a procedurfight hand side describes processes for which no collision
similar to that used for the eqU|||br|Um renewal process. Th%vent takes p|ace’ namewizoi in our averaging procedure

smallu behavior of(x'(u))r, Eq.(69), is found usingi(u)
defined in Eq(72). Then the transformation—t is invoked
to find the mean displacement

[this term originates from Ed57)]. For the long tailed PDFs
we are considering here the probability that no collision
events occur in the time interval (9,[i.e., Z(t), Eq. (39)]
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decays as a power law to zero. Insertiip@) for «<2 in (FI2kgT)(x?)
Eg. (83) the smallu behavior of the mean displacement is limR(t)= |im—or=(1—a)_1
easily shown to be F—0 F-o  (X(1)F
. for 1<a<?2 instead of lim_oR(t)=1.
(R(U))e= PoZed U) A strong sensitivity to the initial preparation of the system
F uMm -’ sets limitations on the way we can use the Einstein relation.

If we know (x2(t))o derived either theoretically or measured

Since the probability that no collision event takes place in€xPerimentally this information can be used to predict
the interval (@) is independent of the mass ratioso is  (X(1))r in the limit F—0 only if we know that the two
(X(t))¢. Needless to say, for classical Gaussian diffusiorProcesses are of the same type. However, all these differ-
processes the realization for which no collision event take§Nces between the processes are of no importance for long
place is negligible for long times. times for systems exhibiting classical Brownian motion.

For the ordinary renewal process EG&0) and(72) yield For Gaussian transport systems a criterion for the weak-
ness of the external field, when the linear response approxi-

[(pol+e [t\17@ mation holds, is that the average drift velocity)r of the
M 2 K) , 0<a<1 test partlc_le is much smaller than the ther_mal velocity. For
stronger fields nonlinear effects become important and the
Do 1+ € ¢ Einstein relation is not valid even approximately. Usually
(X(1))p={ MO 5 A n(K)’ a=1 (84)  when(x)r>\kgTM new types of dissipation mechanisms
€ must be taken into accouf#.g., inelastic collisions For our
model the velocity of the test particle is time dependent and
|O_0?1+ € 1<a<3 therefore for any given force the condition
(M 2e '

(x(t)r<\kgTM (85)
and if we compare this equation with E®2), we see again

that the two processes give different results due to the dif!vill be satisfied only during a finite interval of time. As
ferent statistical properties of the first time interval in the follows from Egs.(76) and(81) the condition(85) means

sequence. e
Both for the equilibrium and ordinary renewal processes, Mkﬂ O<a<l
the terms depending on the initial momentp of the test (1-a)t’
particle equation$82) and(84), however large, are for long F< (86)
enough times smaller than the leading term(xf(t))¢ in M\/kBTMI‘(4—a)/ |27
Egs.(76) and(81). Nevertheless, Eq$82) and(84) indicate G- \;) v 1<a<2

that the initial conditionp, decays slowly for anomalous
transport. Its influence ofX'(t)) increases with time as a gqr any finite forceF, however small, this criterion is vio-

power law instead of the more normal situation where thqateq for long enough times and then the generalized Einstein
initial condition p, is responsible for long times only for a g|ation is not expected to be valid.

time independent shift ofx'(t)).

G. Calculation of q(t)

F. Generalized Einstein relation . . .
An example of how an external field can influene) is

We compare between the results derived here for theliscussed. It is done for models which are slightly different
equilibrium (76) and ordinary(81) renewal processes and from ours but maintain its most important feature, namely,
our results for the mean square displacement for the casfie longed tailed PDF(7). Two such models aréa) the
F=0, published previously25]. The Einstein relation is ordered Lorentz gagt2—44 in which a particle is reflected
valid for this model both for the equilibrium and ordinary by equally spaced static spherical obstacles, centered on a
processes. This means that when we insert our results foungypercubic lattice an¢b) anomalous Knudsen diffusidd5]
in [25] in Eq. (11) and assume that the parametets, ...  where the reflections are from a random fractal which mim-
are identical for both the force free process and the forcecs a disordered porous medium. In both cases one can ana-
driven process we find inded®(t) = 1. Our results show that lyze the anomalous diffusion in the following approach. First
the Einstein relation holds fdf —0 even for nonstationary calculate the PDF of the path length$i.e., the length of the
processes when there is no microscopic time scale. trajectories along which the test particle moves frigelgr

We emphasize that if we compare between the two differan anomalous system one finpg)~r =" [e.g., for the
ent processes, the ordinary and the equilibrium, the Einsteifwo-dimensional Lorentz gast=2 and hence(x?(t))o
relation does not hold even wheéh—0. Thus departures ~tint]. Since between the collision events the particle
from the Einstein relatiorin the limit F—0) will be found  moves with a constant velocityF0) one finds after a
for long times when initial conditions are usually assumed tosimple transformation the PDF of times between the colli-
be of no importance. Thus if we takerongly) (x?(t))§%of  sion eventsg(7)~7 7). Once the PDFy(7) is known
an equilibrium renewal process agE(t))g of an ordinary the diffusion characteristics can be analyzed using the/Le
process the rati®(t) defined in Eq(11) is walk approach(see, e.g9.[27)).
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To take into account the influence of the force on the PDFent controlling the algebraic decay #f ) or q(7) depends

g(7) we shall consider the transformation rule on the strength of the applied external field, large deviations
am from the Einstein relation are found for long enough times
a . . . . .
r(t,6)= \/ v oS 0)+ —| +uv2sirB(8), 87) gnd f|n|'te fprces. Thus the van .Kg'mpen objection may find
2 its applications for systems exhibiting anomalous diffusion.

. These large deviations under ordinary situations are not
wherev =|v| is the speed of the test particle after a collision found when the transport is Gaussian. For Gaussian systems
event and the angle of reflectighis a random variable. This the central limit theorem and the law of large numbers guar-
transformation rule simply relates the displacemenif a  antees that bothx(t))r and(x(t)), increase linearly with
test particle accelerating in two dimensions with the time ofijme and henc&(t) is time independent. For the anomalous

freedflight T'_Vg? Shﬁ‘,” rz]assume f(;]r simpILcity”t_this ﬁ non-l_ cases these laws are not valid. Rather an expoferhar-
random variable which means that each collision thermalizeg o ;65 the drift which is directly related to the exponent

the test particle velocitythe case whem is distributed ac- controlling the algebraic decay gi(t) or q(t). Hence if the

?%f'g%f%g;w iixéﬂnpgf can be easily calculated as well exponentae depends on the strength of the field so dées
For this case large deviations from the Einstein relation are
1 (2= ) expected for finite fields and long times.
a(n)=5- fo p(r(7,0)r(7,6)dé, (88) A field dependence ofs: is calculated for the SLM
model. Within the framework of CTRW the influence of the
where we have assumed thais distributed uniformly. For ~external field ony(t) was calculated. It was shown that the
short times we have=ut, exactly like the casa=0 and €scape times of electrons from deep traps are reduced when a
then if p(r)~1/(Art™%) we have field is switched on. Two different field dependent mecha-
nisms influence the escape from the trap. The first is tem-
perature dependent and is caused by the energy shift in the

q(7)~ e (89) different sites the electron can tunnel to. The second is due to
Av® )
a reduction of the action and is more directly related to quan-
for long times we have from Eq87) tum mechanical tunneling. The time scales at which the non-
linear effects are of importance are discussed. Generally, un-
41t (142a) like Gaussian transport mechanisms, these effects become
a(t)~ A t “ 90 important, as time passes by.

It is interesting to mention that an even stronger type of

We see that when a field is switched on the exponent desensitivity of(t) to an external bias has already been dem-
scribing the algebraic decay switches from & for F=0 to  Onstrated in47] in the context of chaos theory. It was shown
1+2a for F#0. The transition time from short to long time that under certain conditions, a walker following a determin-
limit is determined by the short range behavior of Pp) ~ iStic iteration rulex,,=g(x,) can be described by the
as well as by the strength of the field, and is not discusse§ TRW, the functiony(t) being derived from the properties
here. of the mapg(x). For nonbiased mapg(t) decays according
We see that very much like/(7) which describes the 0 @ power law[27,48, while for any finite bias and for long
subdiffusive behavior in the Scher-Lax-Montroll model the €nough times)(t) decays exponentially.
longed tailed PDFq(7) may also depend on the external Our_coII|S|on model shqws thgt when the second_ moment
force. For both cases when a force is applied the process&% the time between collisions diverges, the mean linear dis-
become faster and hengér) and(7) decay faster to zero. placement is enha_nced. Unllke_Gz_;\usaan transport for targe
Like the CTRW the dependence of the exponent describing® mean linear displacement is independent of the strength
the long time behavior ofj(7) on the field implies that for Of the collisions, controlled by the mass ratio It is an
finite fields and long times a violation of the Einstein relationimportant parameter controlling the transition time before

is naturally expected. which (x(t))¢ increases linearly with time and after which
its growth is enhanced. The transport is dominated by long
V. SUMMARY AND DISCUSSION time intervals in which no collision event takes place. During

these time intervals the particle accelerates and gains a high

Nonequilibrium phenomena close to thermal equilibriumvelocity. The energy gain during long time intervals between
are often described by means of the linear response theoppllisions is larger than the thermal energy and, hence, the
[15] relating the response functions to equilibrium canonicalperturbation acting on the velocity distribution is not weak.
correlators. van Kampe#6] put forward a sharp objection This means that linear response theory may be invalid for
to this theory, claiming that it has only a very short range oflong times and a strong deviation from the Einstein relation
validity. This objection was answered by Kuleo al. [15]. is expected even for weak fields. Unlike the classical models
The linear response theory for normal systems was used sugith (x(t))-~t, for our enhanced case the criterion for the
cessfully to analyze many experimental results and henceeakness of the field is determined by an inequal&g)
(we believe from an experimental or phenomenological depending on time.
point of view the van Kampen objection to the derivation of Note added in proofRecently a related experimental
linear response has no practical use. However, using a nostudy of anomalous hole transport in pgkenlyne vi-
Hamiltonian approach, we have shown that when the expoayleng was published50].
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APPENDIX A

Consider a model of symmetric random barriers situated

on a lattice. The transition rates from siteo siten+1 and
vice versa are
Wn—>n+1:Wne|F/2kBTl Wn+1—>n:Wne7|F/2kBT'
(A1)

this choice detailed balance
IF/kgT

For
Whon+1/Whi1n=€

In a similar wayW,_;_,=W,_,e"'F/%eT

. The probability

is satisfied since
with | being the lattice spacing.
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APPENDIX B
n 1
(Q(t))=ex ——f d cosé
21
Xf dXXZ{l—EXF[—Te’X(lfﬂcose)]} ,
0
(BY)

with cosé=r-E. Changing the variable;=x[1— 8 cos4],

7 (* 1
<Q(t)>=eX[< - EJlld Ccos am

that a particle initially at a sit@ will jump to the neighbor * B
n+1 before it jumps to site—1 is X fo dyy*{1—exd —re y]})' (B2)
P(n—n+1)= Wh—nt1 (A2) The integration ovey was done in SL,
Wn—»n—1+Wn—>n+1 3
_ n_T -a
and similarly the probability to jump from ton—1 is (Q(t))—expl’ T(1-p923 da” v(@,7) ) 1}’
(B3)
_ n—n—1
P(n—n-1)= W1+ Woner (A3) wherey(a,7) is the incompletd” function.
From Eq.(B3) we see that the renormalization rylg?) is
Therefore the displacement per jump is valid for all timest. The asymptotic behavior d®(r) de-
_ rived from Eq.(B3) is [see Eq.(21) in Ref.[17] ]
Qe=1((Pn_n+1)=(Pn_n-1))
W, elF/2eT e~ IFi2keT IN(Q(t))=— 3 ﬁ
= IF/2kgT “IFi2kgT [ * (Ad)
Wne ™8+ Wy g 8 X[(In e’7)3+3&(2)(In e’1)+2£(3)],
The averag€ ) is over the random variabléd,, andW,,_. (B4)
We assume that the system is isotropic and so the right hand
side of Eq.(A4) is independent of. If we assume that the With y=0.572..., §2)=164..., and &@3)

disordered system can be replaced by an ordered one wel-2® ... .Using Egs.(B4) and(19) we get Eq.(28).

have
APPENDIX C

(A5) Ways to generate random variables described by different
types of PDFde.g., the exponential, the Lorentzian, and the
Gaussian PDBscan be found in49]. Here we show how to

0generate random variables whose PDF follows the rule

X)e=I tanl‘(%).

The effective medium approach we used to derive &)
is similar in spirit to the CTRW approach where a disordere
system is replaced by an ordered daesingleys(t) describes
the evolution and not a family af(t)’s which are dependent
on the hopping site More generally we can consider also for r—« and 0< <. We have in mind cases where the
the disordered case assuming exact behavior of the PDF for smatl is irrelevant. Two
main methods are usually usptb] to generate random vari-
F_|<1 (A6) ables:(a) an accept-reject method which is not efficient and
2k, T 77 (b) a transformation method. Here we shall give a simple
transformation rule which generates a random variable de-
scribed by a longed tailed PDF.

We use a random number generator which manufactures a
random variableu which is distributed uniformly in the in-
terval O<u<1. Then we define the transformatidfor &
>0
This result is independent of the type of disorder. We now :
insert Eq.(A7) together with the identityx?),=12 in Eq.

(13) and verify that lim_,gR(t)=1.

q(r)~7 1+ (CD

then linearizing Eq(A4)

Fl2

(X)e= HKaT (A7)

(C2
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and hence
AL1-01é

du 2
Q(T):P(U)‘E=<ﬂ_—§

(C3

(14 72%)

andp(u) is the uniform PDF. For long times we have

E. BARKAI AND V. N. FLEUROV
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q(T)N(%) T—(1+1/§) (C4)

and hence if we identify 1=z our goal is accomplished.
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